Advertisement

Gout

A Review of Nonmodifiable and Modifiable Risk Factors
Published:September 01, 2014DOI:https://doi.org/10.1016/j.rdc.2014.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lipkowitz M.S.
        Regulation of uric acid excretion by the kidney.
        Curr Rheumatol Rep. 2012; 14: 179-188
        • Roddy E.
        • Choi H.K.
        Epidemiology of Gout.
        Rheum Dis Clin North Am. 2014; 40: 155-175
        • Campion E.W.
        • Glynn R.J.
        • DeLabry L.O.
        Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study.
        Am J Med. 1987; 82: 421-426
        • Bhole V.
        • de Vera M.
        • Rahman M.M.
        • et al.
        Epidemiology of gout in women: fifty-two-year followup of a prospective cohort.
        Arthritis Rheum. 2010; 62: 1069-1076
        • Zhu Y.
        • Pandya B.J.
        • Choi H.K.
        Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008.
        Arthritis Rheum. 2011; 63: 3136-3141
        • Wertheimer A.
        • Morlock R.
        • Becker M.A.
        A revised estimate of the burden of illness of gout.
        Curr Ther Res Clin Exp. 2013; 75: 1-4
        • Singh J.A.
        • Reddy S.G.
        • Kundukulam J.
        Risk factors for gout and prevention: a systematic review of the literature.
        Curr Opin Rheumatol. 2011; 23: 192-202
        • Wallace K.L.
        • Riedel A.A.
        • Joseph-Ridge N.
        • et al.
        Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population.
        J Rheumatol. 2004; 31: 1582-1587
        • Maynard J.W.
        • McAdams-Demarco M.A.
        • Law A.
        • et al.
        Racial differences in gout incidence in a population-based cohort: Atherosclerosis Risk in Communities Study.
        Am J Epidemiol. 2014; 179: 576-583
        • Reginato A.M.
        • Mount D.B.
        • Yang I.
        • et al.
        The genetics of hyperuricaemia and gout.
        Nat Rev Rheumatol. 2012; 8: 610-621
        • Merriman T.R.
        • Choi H.K.
        • Dalbeth N.
        The genetic basis of gout.
        Rheum Dis Clin North Am. 2014; 40: 279-290
        • Choi H.K.
        • Mount D.B.
        • Reginato A.M.
        Pathogenesis of gout.
        Ann Intern Med. 2005; 143: 499-516
        • Öztürk M.A.
        • Kaya A.
        • Senel S.
        • et al.
        Demographic and clinical features of gout patients in Turkey: a multicenter study.
        Rheumatol Int. 2013; 33: 847-852
        • Chen J.H.
        • Yeh W.T.
        • Chuang S.Y.
        • et al.
        Gender-specific risk factors for incident gout: a prospective cohort study.
        Clin Rheumatol. 2012; 31: 239-245
        • Puig J.G.
        • Michan A.D.
        • Jimenez M.L.
        • et al.
        Female gout. Clinical spectrum and uric acid metabolism.
        Arch Intern Med. 1991; 151: 726-732
        • Hak A.E.
        • Choi H.K.
        Menopause, postmenopausal hormone use and serum uric acid levels in US women–the Third National Health and Nutrition Examination Survey.
        Arthritis Res Ther. 2008; 10: R116
        • Hak A.E.
        • Curhan G.C.
        • Grodstein F.
        • et al.
        Menopause, postmenopausal hormone use and risk of incident gout.
        Ann Rheum Dis. 2010; 69: 1305-1309
        • Takiue Y.
        • Hosoyamada M.
        • Kimura M.
        • et al.
        The effect of female hormones upon urate transport systems in the mouse kidney.
        Nucleosides Nucleotides Nucleic Acids. 2011; 30: 113-119
        • Choi H.K.
        • Ford E.S.
        Haemoglobin A1c, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels–the Third National Health and Nutrition Examination Survey.
        Rheumatology (Oxford). 2008; 47: 713-717
        • Fang J.
        • Alderman M.H.
        Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey.
        JAMA. 2000; 283: 2404-2410
        • Saag K.G.
        • Choi H.
        Epidemiology, risk factors, and lifestyle modifications for gout.
        Arthritis Res Ther. 2006; 8: S2
        • Kuzuya M.
        • Ando F.
        • Iguchi A.
        • et al.
        Effect of aging on serum uric acid levels: longitudinal changes in a large Japanese population group.
        J Gerontol A Biol Sci Med Sci. 2002; 57: M660-M664
        • Hochberg M.C.
        • Thomas J.
        • Thomas D.J.
        • et al.
        Racial differences in the incidence of gout. The role of hypertension.
        Arthritis Rheum. 1995; 38: 628-632
        • Gaffo A.L.
        • Jacobs Jr., D.R.
        • Lewis C.E.
        • et al.
        Association between being African-American, serum urate levels and the risk of developing hyperuricemia: findings from the Coronary Artery Risk Development in Young Adults cohort.
        Arthritis Res Ther. 2012; 14: R4
        • DeBoer M.D.
        • Dong L.
        • Gurka M.J.
        Racial/ethnic and sex differences in the relationship between uric acid and metabolic syndrome in adolescents: an analysis of National Health and Nutrition Survey 1999-2006.
        Metabolism. 2012; 61: 554-561
        • Klemp P.
        • Stansfield S.A.
        • Castle B.
        • et al.
        Gout is on the increase in New Zealand.
        Ann Rheum Dis. 1997; 56: 22-26
        • Rose B.S.
        Gout in Maoris.
        Semin Arthritis Rheum. 1975; 5: 121-145
        • Singh J.A.
        Racial and gender disparities among patients with gout.
        Curr Rheumatol Rep. 2013; 15: 307
        • Winnard D.
        • Wright C.
        • Taylor W.J.
        • et al.
        National prevalence of gout derived from administrative health data in Aotearoa New Zealand.
        Rheumatology (Oxford). 2012; 51: 901-909
        • Stamp L.K.
        • Wells J.E.
        • Pitama S.
        • et al.
        Hyperuricaemia and gout in New Zealand rural and urban Maori and non-Maori communities.
        Intern Med J. 2013; 43: 678-684
        • Portis A.J.
        • Laliberte M.
        • Tatman P.
        • et al.
        High prevalence of gouty arthritis among the Hmong population in Minnesota.
        Arthritis Care Res (Hoboken). 2010; 62: 1386-1391
        • Wahedduddin S.
        • Singh J.A.
        • Culhane-Pera K.A.
        • et al.
        Gout in the Hmong in the United States.
        J Clin Rheumatol. 2010; 16: 262-266
        • Prasad P.
        • Krishnan E.
        Filipino gout: a review.
        Arthritis Care Res (Hoboken). 2014; 66: 337-343
        • Emmerson B.T.
        • Nagel S.L.
        • Duffy D.L.
        • et al.
        Genetic control of the renal clearance of urate: a study of twins.
        Ann Rheum Dis. 1992; 51: 375-377
        • Wilk J.B.
        • Djousse L.
        • Borecki I.
        • et al.
        Segregation analysis of serum uric acid in the NHLBI Family Heart Study.
        Hum Genet. 2000; 106: 355-359
        • Yang Q.
        • Guo C.Y.
        • Cupples L.A.
        • et al.
        Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study.
        Metabolism. 2005; 54: 1435-1441
        • Enomoto A.
        • Kimura H.
        • Chairoungdua A.
        • et al.
        Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
        Nature. 2002; 417: 447-452
        • Taniguchi A.
        • Urano W.
        • Yamanaka M.
        • et al.
        A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout.
        Arthritis Rheum. 2005; 52: 2576-2577
        • Iwai N.
        • Mino Y.
        • Hosoyamada M.
        • et al.
        A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese.
        Kidney Int. 2004; 66: 935-944
        • Graessler J.
        • Graessler A.
        • Unger S.
        • et al.
        Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population.
        Arthritis Rheum. 2006; 54: 292-300
        • Li C.
        • Han L.
        • Levin A.M.
        • et al.
        Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese.
        J Med Genet. 2010; 47: 204-210
        • Vazquez-Mellado J.
        • Jimenez-Vaca A.L.
        • Cuevas-Covarrubias S.
        • et al.
        Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout.
        Rheumatology (Oxford). 2007; 46: 215-219
        • Caulfield M.J.
        • Munroe P.B.
        • O'Neill D.
        • et al.
        SLC2A9 is a high-capacity urate transporter in humans.
        PLoS Med. 2008; l: e197
        • Anzai N.
        • Ichida K.
        • Jutabha P.
        • et al.
        Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans.
        J Biol Chem. 2008; 283: 26834-26838
        • Vitart V.
        • Rudan I.
        • Hayward C.
        • et al.
        SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.
        Nat Genet. 2008; 40: 437-442
        • Matsuo H.
        • Chiba T.
        • Nagamori S.
        • et al.
        Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.
        Am J Hum Genet. 2008; 83: 744-751
        • Doring A.
        • Gieger C.
        • Mehta D.
        • et al.
        SLC2A9 influences uric acid concentrations with pronounced sex-specific effects.
        Nat Genet. 2008; 40: 430-436
        • Wallace C.
        • Newhouse S.J.
        • Braund P.
        • et al.
        Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.
        Am J Hum Genet. 2008; 82: 139-149
        • Kolz M.
        • Johnson T.
        • Sanna S.
        • et al.
        Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations.
        PLoS Genet. 2009; 5: e1000504
        • Karns R.
        • Zhang G.
        • Sun G.
        • et al.
        Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia.
        Ann Hum Genet. 2012; 76: 121-127
        • Brandstatter A.
        • Kiechl S.
        • Kollerits B.
        • et al.
        Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI.
        Diabetes Care. 2008; 31: 1662-1667
        • Hollis-Moffatt J.E.
        • Gow P.J.
        • Harrison A.A.
        • et al.
        The SLC2A9 nonsynonymous Arg265His variant and gout: evidence for a population-specific effect on severity.
        Arthritis Res Ther. 2011; 13: R85
        • Mobasheri A.
        • Neama G.
        • Bell S.
        • et al.
        Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9.
        Cell Biol Int. 2002; 26: 297-300
        • Woodward O.M.
        • Kottgen A.
        • Coresh J.
        • et al.
        Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
        Proc Natl Acad Sci U S A. 2009; 106: 10338-10342
        • Dehghan A.
        • Kottgen A.
        • Yang Q.
        • et al.
        Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.
        Lancet. 2008; 372: 1953-1961
        • Matsuo H.
        • Takada T.
        • Ichida K.
        • et al.
        Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.
        Sci Transl Med. 2009; 1: 5ra11
        • Matsuo H.
        • Ichida K.
        • Takada T.
        • et al.
        Common dysfunctional variants in ABCG2 are a major cause of early-onset gout.
        Sci Rep. 2013; 3: 2014
        • Tu H.P.
        • Ko A.M.
        • Chiang S.L.
        • et al.
        Joint effects of alcohol consumption and ABCG2 Q141K on chronic tophaceous gout risk.
        J Rheumatol. 2014; 41: 749-758
        • Tin A.
        • Woodward O.M.
        • Kao W.H.
        • et al.
        Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.
        Hum Mol Genet. 2011; 20: 4056-4068
        • Kottgen A.
        • Albrecht E.
        • Teumer A.
        • et al.
        Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.
        Nat Genet. 2013; 45: 145-154
        • Maclachlan M.J.
        • Rodnan G.P.
        Effect of food, fast and alcohol on serum uric acid and acute attacks of gout.
        Am J Med. 1967; 42: 38-57
        • Faller J.
        • Fox I.H.
        Ethanol-induced hyperuricemia: evidence for increased urate production by activation of adenine nucleotide turnover.
        N Engl J Med. 1982; 307: 1598-1602
        • Faller J.
        • Fox I.H.
        Ethanol induced alterations of uric acid metabolism.
        Adv Exp Med Biol. 1984; 165: 457-462
        • Moriwaki Y.
        • Ka T.
        • Takahashi S.
        • et al.
        Effect of beer ingestion on the plasma concentrations and urinary excretion of purine bases: one-month study.
        Nucleosides Nucleotides Nucleic Acids. 2006; 25: 1083-1085
        • Ka T.
        • Moriwaki Y.
        • Takahashi S.
        • et al.
        Effects of long-term beer ingestion on plasma concentrations and urinary excretion of purine bases.
        Horm Metab Res. 2005; 37: 641-645
        • Gibson T.
        • Rodgers A.V.
        • Simmonds H.A.
        • et al.
        Beer drinking and its effect on uric acid.
        Br J Rheumatol. 1984; 23: 203-209
        • Yamamoto T.
        • Moriwaki Y.
        • Takahashi S.
        • et al.
        Effect of beer on the plasma concentrations of uridine and purine bases.
        Metabolism. 2002; 51: 1317-1323
        • Choi H.K.
        • Curhan G.
        Beer, liquor, and wine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey.
        Arthritis Rheum. 2004; 51: 1023-1029
        • Gaffo A.L.
        • Roseman J.M.
        • Jacobs Jr., D.R.
        • et al.
        Serum urate and its relationship with alcoholic beverage intake in men and women: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort.
        Ann Rheum Dis. 2010; 69: 1965-1970
        • Choi H.K.
        • Atkinson K.
        • Karlson E.W.
        • et al.
        Alcohol intake and risk of incident gout in men: a prospective study.
        Lancet. 2004; 363: 1277-1281
        • Dalvi S.R.
        • Pillinger M.H.
        Saturnine gout, redux: a review.
        Am J Med. 2013; 126: 450.e1-450.e8
        • Krishnan E.
        • Lingala B.
        • Bhalla V.
        Low-level lead exposure and the prevalence of gout: an observational study.
        Ann Intern Med. 2012; 157: 233-241
        • Wang M.
        • Jiang X.
        • Wu W.
        • et al.
        A meta-analysis of alcohol consumption and the risk of gout.
        Clin Rheumatol. 2013; 32: 1641-1648
        • Matzkies F.
        • Berg G.
        • Madl H.
        The uricosuric action of protein in man.
        Adv Exp Med Biol. 1980; 122A: 227-231
        • Choi H.K.
        • Liu S.
        • Curhan G.
        Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey.
        Arthritis Rheum. 2005; 52: 283-289
        • Choi H.K.
        • Atkinson K.
        • Karlson E.W.
        • et al.
        Purine-rich foods, dairy and protein intake, and the risk of gout in men.
        N Engl J Med. 2004; 350: 1093-1103
        • Villegas R.
        • Xiang Y.B.
        • Elasy T.
        • et al.
        Purine-rich foods, protein intake, and the prevalence of hyperuricemia: the Shanghai Men's Health Study.
        Nutr Metab Cardiovasc Dis. 2012; 22: 409-416
        • Yu K.H.
        • See L.C.
        • Huang Y.C.
        • et al.
        Dietary factors associated with hyperuricemia in adults.
        Semin Arthritis Rheum. 2008; 37: 243-250
        • Messina M.
        • Messina V.L.
        • Chan P.
        Soyfoods, hyperuricemia and gout: a review of the epidemiologic and clinical data.
        Asia Pac J Clin Nutr. 2011; 20: 347-358
        • Choi H.K.
        A prescription for lifestyle change in patients with hyperuricemia and gout.
        Curr Opin Rheumatol. 2010; 22: 165-172
        • Fox I.H.
        • Kelley W.N.
        Studies on the mechanism of fructose-induced hyperuricemia in man.
        Metabolism. 1972; 21: 713-721
        • Raivio K.O.
        • Becker A.
        • Meyer L.J.
        • et al.
        Stimulation of human purine synthesis de novo by fructose infusion.
        Metabolism. 1975; 24: 861-869
        • Emmerson B.T.
        Effect of oral fructose on urate production.
        Ann Rheum Dis. 1974; 33: 276-280
        • Choi J.W.
        • Ford E.S.
        • Gao X.
        • et al.
        Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey.
        Arthritis Rheum. 2008; 59: 109-116
        • Choi H.K.
        • Curhan G.
        Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study.
        BMJ. 2008; 336: 309-312
        • Choi H.K.
        • Willett W.
        • Curhan G.
        Fructose-rich beverages and risk of gout in women.
        JAMA. 2010; 304: 2270-2278
        • Dalbeth N.
        • House M.E.
        • Gamble G.D.
        • et al.
        Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load.
        Ann Rheum Dis. 2013; 72: 1868-1873
        • Dalbeth N.
        • House M.E.
        • Gamble G.D.
        • et al.
        Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge.
        Arthritis Res Ther. 2014; 16: R34
        • Batt C.
        • Phipps-Green A.J.
        • Black M.A.
        • et al.
        Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout.
        Ann Rheum Dis. 2013; ([Epub ahead of print])
        • Jeroncic I.
        • Mulic R.
        • Klismanic Z.
        • et al.
        Interactions between genetic variants in glucose transporter type 9 (SLC2A9) and dietary habits in serum uric acid regulation.
        Croat Med J. 2010; 51: 40-47
        • Gao X.
        • Qi L.
        • Qiao N.
        • et al.
        Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women.
        Hypertension. 2007; 50: 306-312
        • Wang D.D.
        • Sievenpiper J.L.
        • de Souza R.J.
        • et al.
        The effects of fructose intake on serum uric acid vary among controlled dietary trials.
        J Nutr. 2012; 142: 916-923
        • Sun S.Z.
        • Flickinger B.D.
        • Williamson-Hughes P.S.
        • et al.
        Lack of association between dietary fructose and hyperuricemia risk in adults.
        Nutr Metab (Lond). 2010; 7: 16
        • Zgaga L.
        • Theodoratou E.
        • Kyle J.
        • et al.
        The association of dietary intake of purine-rich vegetables, sugar-sweetened beverages and dairy with plasma urate, in a cross-sectional study.
        PLoS One. 2012; 7: e38123
        • Garrel D.R.
        • Verdy M.
        • PetitClerc C.
        • et al.
        Milk- and soy-protein ingestion: acute effect on serum uric acid concentration.
        Am J Clin Nutr. 1991; 53: 665-669
        • Ryu K.A.
        • Kang H.H.
        • Kim S.Y.
        • et al.
        Comparison of nutrient intake and diet quality between hyperuricemia subjects and controls in Korea.
        Clin Nutr Res. 2014; 3: 56-63
        • Dalbeth N.
        • Wong S.
        • Gamble G.D.
        • et al.
        Acute effect of milk on serum urate concentrations: a randomised controlled crossover trial.
        Ann Rheum Dis. 2010; 69: 1677-1682
        • Dalbeth N.
        • Gracey E.
        • Pool B.
        • et al.
        Identification of dairy fractions with anti-inflammatory properties in models of acute gout.
        Ann Rheum Dis. 2010; 69: 766-769
        • Dalbeth N.
        • Ames R.
        • Gamble G.D.
        • et al.
        Effects of skim milk powder enriched with glycomacropeptide and G600 milk fat extract on frequency of gout flares: a proof-of-concept randomised controlled trial.
        Ann Rheum Dis. 2012; 71: 929-934
        • Kiyohara C.
        • Kono S.
        • Honjo S.
        • et al.
        Inverse association between coffee drinking and serum uric acid concentrations in middle-aged Japanese males.
        Br J Nutr. 1999; 82: 125-130
        • Pham N.M.
        • Yoshida D.
        • Morita M.
        • et al.
        The relation of coffee consumption to serum uric Acid in Japanese men and women aged 49-76 years.
        J Nutr Metab. 2010; 2010
        • Choi H.K.
        • Curhan G.
        Coffee, tea, and caffeine consumption and serum uric acid level: the third national health and nutrition examination survey.
        Arthritis Rheum. 2007; 57: 816-821
        • Choi H.K.
        • Willett W.
        • Curhan G.
        Coffee consumption and risk of incident gout in men: a prospective study.
        Arthritis Rheum. 2007; 56: 2049-2055
        • Choi H.K.
        • Curhan G.
        Coffee consumption and risk of incident gout in women: the Nurses' Health Study.
        Am J Clin Nutr. 2010; 92: 922-927
        • Stein H.B.
        • Hasan A.
        • Fox I.H.
        Ascorbic acid-induced uricosuria. A consequency of megavitamin therapy.
        Ann Intern Med. 1976; 84: 385-388
        • Huang H.Y.
        • Appel L.J.
        • Choi M.J.
        • et al.
        The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial.
        Arthritis Rheum. 2005; 52: 1843-1847
        • Gao X.
        • Curhan G.
        • Forman J.P.
        • et al.
        Vitamin C intake and serum uric acid concentration in men.
        J Rheumatol. 2008; 35: 1853-1858
        • Choi H.K.
        • Gao X.
        • Curhan G.
        Vitamin C intake and the risk of gout in men: a prospective study.
        Arch Intern Med. 2009; 169: 502-507
        • Juraschek S.P.
        • Miller 3rd, E.R.
        • Gelber A.C.
        Effect of oral vitamin C supplementation on serum uric acid: a meta-analysis of randomized controlled trials.
        Arthritis Care Res (Hoboken). 2011; 63: 1295-1306
        • Jacob R.A.
        • Spinozzi G.M.
        • Simon V.A.
        • et al.
        Consumption of cherries lowers plasma urate in healthy women.
        J Nutr. 2003; 133: 1826-1829
        • Zhang Y.
        • Neogi T.
        • Chen C.
        • et al.
        Cherry consumption and decreased risk of recurrent gout attacks.
        Arthritis Rheum. 2012; 64: 4004-4011
        • Schlesinger N.
        • Schlesinger M.
        Previously reported prior studies of cherry juice concentrate for gout flare prophylaxis: comment on the article by Zhang et al.
        Arthritis Rheum. 2013; 65: 1135-1136
        • Williams P.T.
        Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men.
        Am J Clin Nutr. 2008; 87: 1480-1487
        • Choi H.K.
        • Atkinson K.
        • Karlson E.W.
        • et al.
        Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study.
        Arch Intern Med. 2005; 165: 742-748
        • Dalbeth N.
        • Chen P.
        • White M.
        • et al.
        Impact of bariatric surgery on serum urate targets in people with morbid obesity and diabetes: a prospective longitudinal study.
        Ann Rheum Dis. 2014; 73: 797-802
        • Antozzi P.
        • Soto F.
        • Arias F.
        • et al.
        Development of acute gouty attack in the morbidly obese population after bariatric surgery.
        Obes Surg. 2005; 15: 405-407
        • Dalbeth N.
        • Pool B.
        • Yip S.
        • et al.
        Effect of bariatric surgery on the inflammatory response to monosodium urate crystals: a prospective study.
        Ann Rheum Dis. 2013; 72: 1583-1584
        • Hanna B.E.
        • Hamed J.M.
        • Touhala L.M.
        Serum uric Acid in smokers.
        Oman Med J. 2008; 23: 269-274
        • Tsuchiya M.
        • Asada A.
        • Kasahara E.
        • et al.
        Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma.
        Circulation. 2002; 105: 1155-1157
        • Harrold L.R.
        • Yood R.A.
        • Mikuls T.R.
        • et al.
        Sex differences in gout epidemiology: evaluation and treatment.
        Ann Rheum Dis. 2006; 65: 1368-1372
        • Shima Y.
        • Teruya K.
        • Ohta H.
        Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese.
        Life Sci. 2006; 79: 2234-2237
        • Jang W.C.
        • Nam Y.H.
        • Park S.M.
        • et al.
        T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects.
        Clin Chim Acta. 2008; 398: 140-144
        • Guan M.
        • Zhang J.
        • Chen Y.
        • et al.
        High-resolution melting analysis for the rapid detection of an intronic single nucleotide polymorphism in SLC22A12 in male patients with primary gout in China.
        Scand J Rheumatol. 2009; 38: 276-281
        • Tu H.P.
        • Chen C.J.
        • Lee C.H.
        • et al.
        The SLC22A12 gene is associated with gout in Han Chinese and Solomon Islanders.
        Ann Rheum Dis. 2010; 69: 1252-1254
        • Li S.
        • Sanna S.
        • Maschio A.
        • et al.
        The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts.
        PLoS Genet. 2007; 3: e194
        • McArdle P.F.
        • Parsa A.
        • Chang Y.P.
        • et al.
        Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish.
        Arthritis Rheum. 2008; 58: 2874-2881
        • Stark K.
        • Reinhard W.
        • Neureuther K.
        • et al.
        Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study.
        PLoS One. 2008; 3: e1948
        • Hollis-Moffatt J.E.
        • Xu X.
        • Dalbeth N.
        • et al.
        Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Maori, Pacific Island, and Caucasian case-control sample sets.
        Arthritis Rheum. 2009; 60: 3485-3492
        • Tu H.P.
        • Chen C.J.
        • Tovosia S.
        • et al.
        Associations of a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders.
        Ann Rheum Dis. 2010; 69: 887-890
        • Urano W.
        • Taniguchi A.
        • Anzai N.
        • et al.
        Association between GLUT9 and gout in Japanese men.
        Ann Rheum Dis. 2010; 69: 932-933
        • Yang Q.
        • Kottgen A.
        • Dehghan A.
        • et al.
        Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors.
        Circ Cardiovasc Genet. 2010; 3: 523-530
        • Charles B.A.
        • Shriner D.
        • Doumatey A.
        • et al.
        A genome-wide association study of serum uric acid in African Americans.
        BMC Med Genomics. 2011; 4: 17
        • Hamajima N.
        • Okada R.
        • Kawai S.
        • et al.
        Significant association of serum uric acid levels with SLC2A9 rs11722228 among a Japanese population.
        Mol Genet Metab. 2011; 103: 378-382
        • Sulem P.
        • Gudbjartsson D.F.
        • Walters G.B.
        • et al.
        Identification of low-frequency variants associated with gout and serum uric acid levels.
        Nat Genet. 2011; 43: 1127-1130
        • Li C.
        • Chu N.
        • Wang B.
        • et al.
        Polymorphisms in the presumptive promoter region of the SLC2A9 gene are associated with gout in a Chinese male population.
        PLoS One. 2012; 7: e24561
        • Voruganti V.S.
        • Kent Jr., J.W.
        • Debnath S.
        • et al.
        Genome-wide association analysis confirms and extends the association of SLC2A9 with serum uric acid levels to Mexican Americans.
        Front Genet. 2013; 4: 279
        • Voruganti V.S.
        • Franceschini N.
        • Haack K.
        • et al.
        Replication of the effect of SLC2A9 genetic variation on serum uric acid levels in American Indians.
        Eur J Hum Genet. 2014; 22: 938-943
        • Phipps-Green A.J.
        • Hollis-Moffatt J.E.
        • Dalbeth N.
        • et al.
        A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets.
        Hum Mol Genet. 2010; 19: 4813-4819
        • Wang B.
        • Miao Z.
        • Liu S.
        • et al.
        Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population.
        Hum Genet. 2010; 127: 245-246
        • Yamagishi K.
        • Tanigawa T.
        • Kitamura A.
        • et al.
        The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people.
        Rheumatology (Oxford). 2010; 49: 1461-1465
        • Matsuo H.
        • Takada T.
        • Ichida K.
        • et al.
        Identification of ABCG2 dysfunction as a major factor contributing to gout.
        Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1098-1104
        • Matsuo H.
        • Takada T.
        • Ichida K.
        • et al.
        ABCG2/BCRP dysfunction as a major cause of gout.
        Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1117-1128
        • Eastmond C.J.
        • Garton M.
        • Robins S.
        • et al.
        The effects of alcoholic beverages on urate metabolism in gout sufferers.
        Br J Rheumatol. 1995; 34: 756-759
        • van der Gaag M.S.
        • van den Berg R.
        • van den Berg H.
        • et al.
        Moderate consumption of beer, red wine and spirits has counteracting effects on plasma antioxidants in middle-aged men.
        Eur J Clin Nutr. 2000; 54: 586-591
        • Zhang Y.
        • Woods R.
        • Chaisson C.E.
        • et al.
        Alcohol consumption as a trigger of recurrent gout attacks.
        Am J Med. 2006; 119: 800.e13-800.e18
        • Neogi T.
        • Chen C.
        • Niu J.
        • et al.
        Alcohol quantity and type on risk of recurrent gout attacks: an internet-based case-crossover study.
        Am J Med. 2014; 127: 311-318