The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3

Published:April 16, 2012DOI:https://doi.org/10.1016/j.rdc.2012.03.004

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haussler M.R.
        • Whitfield G.K.
        • Haussler C.A.
        • et al.
        The nuclear vitamin D receptor: biological and molecular regulatory properties revealed.
        J Bone Miner Res. 1998; 13: 325-349
        • Sutton A.L.
        • MacDonald P.N.
        Vitamin D: more than a “bone-a-fide” hormone.
        Mol Endocrinol. 2003; 17: 777-791
        • Bouillon R.
        • Carmeliet G.
        • Verlinden L.
        • et al.
        Vitamin D and human health: lessons from vitamin D receptor null mice.
        Endocr Rev. 2008; 29: 726-776
        • Kim S.
        • Yamazaki M.
        • Zella L.A.
        • et al.
        Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers.
        Mol Cell Biol. 2006; 26: 6469-6486
        • Zella L.A.
        • Kim S.
        • Shevde N.K.
        • et al.
        Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3.
        Mol Endocrinol. 2006; 20: 1231-1247
        • Fretz J.
        • Zella L.
        • Kim S.
        • et al.
        1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription.
        Mol Endocrinol. 2006; 20: 2215-2230
        • Meyer M.
        • Watanuki M.
        • Kim S.
        • et al.
        The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells.
        Mol Endocrinol. 2006; 20: 1447-1461
        • Brumbaugh P.F.
        • Haussler M.R.
        1α,25-Dihydroxycholecalciferol receptors in intestine. I. Association of 1α,25-dihydroxycholecalciferol with intestinal mucosa chromatin.
        J Biol Chem. 1974; 249: 1251-1257
        • Brumbaugh P.F.
        • Haussler M.R.
        1α,25-Dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor.
        J Biol Chem. 1974; 249: 1258-1262
        • McDonnell D.P.
        • Mangelsdorf D.J.
        • Pike J.W.
        • et al.
        Molecular cloning of complementary DNA encoding the avian receptor for vitamin D.
        Science. 1987; 235: 1214-1217
        • Baker A.R.
        • McDonnell D.P.
        • Hughes M.
        • et al.
        Cloning and expression of full-length cDNA encoding human vitamin D receptor.
        Proc Natl Acad Sci U S A. 1988; 85: 3294-3298
        • Rochel N.
        • Wurtz J.M.
        • Mitschler A.
        • et al.
        The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand.
        Mol Cell. 2000; 5: 173-179
        • Vanhooke J.L.
        • Benning M.M.
        • Bauer C.B.
        • et al.
        Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide.
        Biochemistry. 2004; 43: 4101-4110
        • Smith C.L.
        • O'Malley B.W.
        Coregulator function: a key to understanding tissue specificity of selective receptor modulators.
        Endocr Rev. 2004; 25: 45-71
        • Jurutka P.
        • Hsieh J.
        • Nakajima S.
        • et al.
        Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation.
        Proc Natl Acad Sci U S A. 1996; 93: 3519-3524
        • Hilliard G.T.
        • Cook R.
        • Weigel N.
        • et al.
        1,25-Dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation.
        Biochemistry. 1994; 33: 4300-4311
        • Jurutka P.
        • Hsieh J.
        • MacDonald P.
        • et al.
        Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells.
        J Biol Chem. 1993; 268: 6791-6799
        • Mangelsdorf D.J.
        • Thummel C.
        • Beato M.
        • et al.
        The nuclear receptor superfamily: the second decade.
        Cell. 1995; 83: 835-839
        • Mangelsdorf D.J.
        • Evans R.M.
        The RXR heterodimers and orphan receptors.
        Cell. 1995; 83: 841-850
        • Ozono K.
        • Liao J.
        • Kerner S.A.
        • et al.
        The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer.
        J Biol Chem. 1990; 265: 21881-21888
        • Carlberg C.
        Molecular basis of the selective activity of vitamin D analogues.
        J Cell Biochem. 2003; 88: 274-281
        • Demay M.B.
        • Kiernan M.S.
        • DeLuca H.F.
        • et al.
        Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3.
        Proc Natl Acad Sci U S A. 1992; 89: 8097-8101
        • Dowd D.R.
        • Sutton A.L.
        • Zhang C.
        • et al.
        Comodulators of vitamin D receptor-mediated gene expression.
        in: Feldman D. Pike J.W. Glorieux F.H. Vitamin D. 2nd edition. Elsevier/Academic Press, New York2005: 291-304
        • Bouillon R.
        • Bischoff-Ferrari H.
        • Willett W.
        Vitamin D and health: perspectives from mice and man.
        J Bone Miner Res. 2008; 23: 974-979
        • Bouillon R.
        • Carmeliet G.
        • Boonen S.
        Ageing and calcium metabolism.
        Baillieres Clin Endocrinol Metab. 1997; 11: 341-365
        • Benn B.S.
        • Ajibade D.
        • Porta A.
        • et al.
        Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k.
        Endocrinology. 2008; 149: 3196-3205
        • Jimi E.
        • Akiyama S.
        • Tsurukai T.
        • et al.
        Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.
        J Immunol. 1999; 163: 434-442
        • Leibbrandt A.
        • Penninger J.
        RANK/RANKL: regulators of immune responses and bone physiology.
        Ann N Y Acad Sci. 2008; 1143: 123-150
        • Makishima M.
        • Lu T.T.
        • Xie W.
        • et al.
        Vitamin D receptor as an intestinal bile acid sensor.
        Science. 2002; 296: 1313-1316
        • Bikle D.D.
        Vitamin D regulated keratinocyte differentiation.
        J Cell Biochem. 2004; 92: 436-444
        • Demay M.
        • MacDonald P.
        • Skorija K.
        • et al.
        Role of the vitamin D receptor in hair follicle biology.
        J Steroid Biochem Mol Biol. 2007; 103: 344-346
        • Adorini L.
        Regulation of immune responses by vitamin D receptor ligands.
        in: Feldman D. Pike J.W. Glorieux F.H. Vitamin D. 2nd edition. Elsevier/Academic Press, New York2005: 631-648
        • Prosser D.E.
        • Jones G.
        Enzymes involved in the activation and inactivation of vitamin D.
        Trends Biochem Sci. 2004; 29: 664-673
        • Zierold C.
        • Darwish H.M.
        • DeLuca H.F.
        Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter.
        J Biol Chem. 1995; 270: 1675-1678
        • Costa E.M.
        • Hirst M.A.
        • Feldman D.
        Regulation of 1,25-dihydroxyvitamin D3 receptors by vitamin D analogs in cultured mammalian cells.
        Endocrinology. 1985; 117: 2203-2210
        • Kerner S.A.
        • Scott R.A.
        • Pike J.W.
        Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3.
        Proc Natl Acad Sci U S A. 1989; 86: 4455-4459
        • Terpening C.
        • Haussler C.
        • Jurutka P.
        • et al.
        The vitamin D-responsive element in the rat bone Gla protein gene is an imperfect direct repeat that cooperates with other cis-elements in 1,25-dihydroxyvitamin D3- mediated transcriptional activation.
        Mol Endocrinol. 1991; 5: 373-385
        • Clemens T.
        • Tang H.
        • Maeda S.
        • et al.
        Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes.
        J Bone Miner Res. 1997; 12: 1570-1576
        • Lian J.B.
        • Stein G.S.
        • Javed A.
        • et al.
        Networks and hubs for the transcriptional control of osteoblastogenesis.
        Rev Endocr Metab Disord. 2006; 7: 1-16
        • Stein G.S.
        • Lian J.B.
        • Stein J.L.
        • et al.
        Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer.
        Adv Enzyme Regul. 2005; 45: 136-154
        • Ducy P.
        • Zhang R.
        • Geoffroy V.
        • et al.
        Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.
        Cell. 1997; 89: 747-754
        • Shang Y.
        • Hu X.
        • DiRenzo J.
        • et al.
        Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.
        Cell. 2000; 103: 843-852
        • Shang Y.
        • Myers M.
        • Brown M.
        Formation of the androgen receptor transcription complex.
        Mol Cell. 2002; 9: 601-610
        • Carroll J.
        • Meyer C.
        • Song J.
        • et al.
        Genome-wide analysis of estrogen receptor binding sites.
        Nat Genet. 2006; 38: 1289-1297
        • Lin C.
        • Vega V.
        • Thomsen J.
        • et al.
        Whole-genome cartography of estrogen receptor alpha binding sites.
        PLoS Genet. 2007; 3: e87
        • Welboren W.
        • van Driel M.
        • Janssen-Megens E.
        • et al.
        ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands.
        EMBO J. 2009; 28: 1418-1428
        • Lefterova M.
        • Zhang Y.
        • Steger D.
        • et al.
        PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale.
        Genes Dev. 2008; 22: 2941-2952
        • Murayama A.
        • Takeyama K.
        • Kitanaka S.
        • et al.
        Positive and negative regulations of the renal 25-hydroxyvitamin D3 1α-hydroxylase gene by parathyroid hormone, calcitonin, and 1α,25(OH)2D3 in intact animals.
        Endocrinology. 1999; 140: 2224-2231
        • Ohyama Y.
        • Ozono K.
        • Uchida M.
        • et al.
        Functional assessment of two vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase gene.
        J Biol Chem. 1996; 271: 30381-30385
        • Dwivedi P.
        • Omdahl J.
        • Kola I.
        • et al.
        Regulation of rat cytochrome P450C24 (CYP24) gene expression. Evidence for functional cooperation of Ras-activated Ets transcription factors with the vitamin D receptor in 1,25-dihydroxyvitamin D(3)-mediated induction.
        J Biol Chem. 2000; 275: 47-55
        • Yang W.
        • Friedman P.
        • Kumar R.
        • et al.
        Expression of 25(OH)D3 24-hydroxylase in distal nephron: coordinate regulation by 1,25(OH)2D3 and cAMP or PTH.
        Am J Physiol. 1999; 276: E793-E805
        • Zierold C.
        • Mings J.
        • DeLuca H.
        Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone.
        J Cell Biochem. 2003; 88: 234-237
        • Kim S.
        • Shevde N.K.
        • Pike J.W.
        1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
        J Bone Miner Res. 2005; 20: 305-317
        • Degenhardt T.
        • Rybakova K.
        • Tomaszewska A.
        • et al.
        Population-level transcription cycles derive from stochastic timing of single-cell transcription.
        Cell. 2009; 138: 489-501
        • Meyer M.B.
        • Goetsch P.D.
        • Pike J.W.
        A downstream intergenic cluster of regulatory enhancers contributes to the induction of CYP24A1 expression by 1α,25-dihydroxyvitamin D3.
        J Biol Chem. 2010; 285: 15599-15610
        • Esteban L.
        • Eisman J.
        • Gardiner E.
        Vitamin D receptor promoter and regulation of receptor expression.
        in: Feldman D. Pike J.W. Glorieux F.H. Vitamin D. 2nd edition. Elsevier/Academic Press, New York2005: 193-217
        • Santiso-Mere D.
        • Sone T.
        • Hilliard 4th, G.M.
        • et al.
        Positive regulation of the vitamin D receptor by its cognate ligand in heterologous expression systems.
        Mol Endocrinol. 1993; 7: 833-839
        • Zella L.A.
        • Meyer M.B.
        • Nerenz R.D.
        • et al.
        Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription.
        Mol Endocrinol. 2010; 24: 128-147
        • Kong Y.Y.
        • Feige U.
        • Sarosi I.
        • et al.
        Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.
        Nature. 1999; 402: 304-309
        • Kong Y.Y.
        • Yoshida H.
        • Sarosi I.
        • et al.
        OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis.
        Nature. 1999; 397: 315-323
        • Kitazawa S.
        • Kajimoto K.
        • Kondo T.
        • et al.
        Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter.
        J Cell Biochem. 2003; 89: 771-777
        • Kitazawa R.
        • Mori K.
        • Yamaguchi A.
        • et al.
        Modulation of mouse RANKL gene expression by Runx2 and vitamin D3.
        J Cell Biochem. 2008; 105: 1289-1297
        • Mori K.
        • Kitazawa R.
        • Kondo T.
        • et al.
        Modulation of mouse RANKL gene expression by Runx2 and PKA pathway.
        J Cell Biochem. 2006; 98: 1629-1644
        • Fu Q.
        • Manolagas S.C.
        • O'Brien C.A.
        Parathyroid hormone controls receptor activator of NF-kappaB ligand gene expression via a distant transcriptional enhancer.
        Mol Cell Biol. 2006; 26: 6453-6468
        • Kim S.
        • Yamazaki M.
        • Shevde N.K.
        • et al.
        Transcriptional control of receptor activator of nuclear factor-kappaB ligand by the protein kinase A activator forskolin and the transmembrane glycoprotein 130-activating cytokine, oncostatin M, is exerted through multiple distal enhancers.
        Mol Endocrinol. 2007; 21: 197-214
        • Galli C.
        • Zella L.A.
        • Fretz J.A.
        • et al.
        Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass.
        Endocrinology. 2008; 149: 146-153
        • Bishop K.A.
        • Meyer M.B.
        • Pike J.W.
        A novel distal enhancer mediates cytokine induction of mouse RANKL gene expression.
        Mol Endocrinol. 2009; 23: 2095-2110
        • Welboren W.
        • Stunnenberg H.
        • Sweep F.
        • et al.
        Identifying estrogen receptor target genes.
        Mol Oncol. 2007; 1: 138-143