Advertisement
Review Article| Volume 39, ISSUE 1, P21-44, February 2013

Download started.

Ok

The Measurement of Joint Mechanics and Their Role in Osteoarthritis Genesis and Progression

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blanco F.J.
        • Guitian R.
        • Vazquez-Martul E.
        • et al.
        Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology.
        Arthritis Rheum. 1998; 41: 284-289
        • Aigner T.
        • McKenna L.
        Molecular pathology and pathobiology of osteoarthritic cartilage.
        Cell Mol Life Sci. 2002; 59: 5-18
        • Mankin H.J.
        • Dorfman H.
        • Lippiello L.
        • et al.
        Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data.
        J Bone Joint Surg Am. 1971; 53: 523-537
        • Green D.M.
        • Noble P.C.
        • Ahuero J.S.
        • et al.
        Cellular events leading to chondrocyte death after cartilage impact injury.
        Arthritis Rheum. 2006; 54: 1509-1517
        • Huser C.A.
        • Davies M.E.
        Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage.
        J Orthop Res. 2006; 24: 725-732
        • Whiteside R.A.
        • Jakob R.P.
        • Wyss U.P.
        • et al.
        Impact loading of articular cartilage during transplantation of osteochondral autograft.
        J Bone Joint Surg Br. 2005; 87: 1285-1291
        • Nishimuta J.F.
        • Levenston M.E.
        Response of cartilage and meniscus tissue explants to in vitro compressive overload.
        Osteoarthritis Cartilage. 2012; 20: 422-429
        • Anderson J.J.
        • Felson D.T.
        Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work.
        Am J Epidemiol. 1988; 128: 179-189
        • Setton L.A.
        • Elliott D.M.
        • Mow V.C.
        Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration.
        Osteoarthritis Cartilage. 1999; 7: 2-14
        • Andriacchi T.P.
        • Mundermann A.
        • Smith R.L.
        • et al.
        A framework for the in vivo pathomechanics of osteoarthritis at the knee.
        Ann Biomed Eng. 2004; 32: 447-457
        • Guilak F.
        • Ratcliffe A.
        • Lane N.
        • et al.
        Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis.
        J Orthop Res. 1994; 12: 474-484
        • Maniwa S.
        • Nishikori T.
        • Furukawa S.
        • et al.
        Alteration of collagen network and negative charge of articular cartilage surface in the early stage of experimental osteoarthritis.
        Arch Orthop Trauma Surg. 2001; 121: 181-185
        • Lane Smith R.
        • Trindade M.C.
        • Ikenoue T.
        • et al.
        Effects of shear stress on articular chondrocyte metabolism.
        Biorheology. 2000; 37: 95-107
        • Smith R.L.
        • Carter D.R.
        • Schurman D.J.
        Pressure and shear differentially alter human articular chondrocyte metabolism: a review.
        Clin Orthop Relat Res. 2004; : S89-S95
        • Radin E.L.
        • Rose R.M.
        Role of subchondral bone in the initiation and progression of cartilage damage.
        Clin Orthop Relat Res. 1986; : 34-40
        • Radin E.L.
        • Paul I.L.
        • Rose R.M.
        Role of mechanical factors in pathogenesis of primary osteoarthritis.
        Lancet. 1972; 1: 519-522
        • Radin E.L.
        • Parker H.G.
        • Pugh J.W.
        • et al.
        Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration.
        J Biomech. 1973; 6: 51-57
        • Burr D.B.
        • Radin E.L.
        Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis?.
        Rheum Dis Clin North Am. 2003; 29: 675-685
        • Lindsey C.T.
        • Narasimhan A.
        • Adolfo J.M.
        • et al.
        Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee.
        Osteoarthritis Cartilage. 2004; 12: 86-96
        • Lo G.H.
        • Zhang Y.
        • McLennan C.
        • et al.
        The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis.
        Osteoarthritis Cartilage. 2006; 14: 984-990
        • Bennell K.L.
        • Creaby M.W.
        • Wrigley T.V.
        • et al.
        Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology.
        Arthritis Rheum. 2008; 58: 2776-2785
        • Kellgren J.H.
        • Lawrence J.S.
        Radiological assessment of osteo-arthrosis.
        Ann Rheum Dis. 1957; 16: 494-502
        • Burstein D.
        • Gray M.L.
        Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis?.
        Osteoarthritis Cartilage. 2006; 14: 1087-1090
        • Wilson D.R.
        • Apreleva M.V.
        • Eichler M.J.
        • et al.
        Accuracy and repeatability of a pressure measurement system in the patellofemoral joint.
        J Biomech. 2003; 36: 1909-1915
        • Radin E.L.
        • Ehrlich M.G.
        • Chernack R.
        • et al.
        Effect of repetitive impulsive loading on the knee joints of rabbits.
        Clin Orthop Relat Res. 1978; : 288-293
        • Song Y.
        • Greve J.M.
        • Carter D.R.
        • et al.
        Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy.
        Osteoarthritis Cartilage. 2006; 14: 728-737
        • Pan B.
        • Wu D.F.
        • Wang Z.Y.
        Internal displacement and strain measurement using digital volume correlation: a least-squares framework.
        Meas Sci Technol. 2012; 23
        • Banerjee P.
        • McLean C.R.
        Femoroacetabular impingement: a review of diagnosis and management.
        Curr Rev Musculoskelet Med. 2011; 4: 23-32
        • Leunig M.
        • Beaule P.E.
        • Ganz R.
        The concept of femoroacetabular impingement: current status and future perspectives.
        Clin Orthop Relat Res. 2009; 467: 616-622
        • Ahmed A.M.
        • Burke D.L.
        • Yu A.
        In-vitro measurement of static pressure distribution in synovial joints–Part II: retropatellar surface.
        J Biomech Eng. 1983; 105: 226-236
        • Ahmed A.M.
        • Duncan N.A.
        Correlation of patellar tracking pattern with trochlear and retropatellar surface topographies.
        J Biomech Eng. 2000; 122: 652-660
        • Ahmed A.M.
        • Duncan N.A.
        • Tanzer M.
        In vitro measurement of the tracking pattern of the human patella.
        J Biomech Eng. 1999; 121: 222-228
        • Huberti H.H.
        • Hayes W.C.
        Contact pressures in chondromalacia patellae and the effects of capsular reconstructive procedures.
        J Orthop Res. 1988; 6: 499-508
        • Huberti H.H.
        • Hayes W.C.
        Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact.
        J Bone Joint Surg Am. 1984; 66: 715-724
        • Ateshian G.A.
        • Kwak S.D.
        • Soslowsky L.J.
        • et al.
        A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods.
        J Biomech. 1994; 27: 111-124
        • Brown T.D.
        • Shaw D.T.
        In vitro contact stress distributions in the natural human hip.
        J Biomech. 1983; 16: 373-384
        • Apreleva M.
        • Hasselman C.T.
        • Debski R.E.
        • et al.
        A dynamic analysis of glenohumeral motion after simulated capsulolabral injury. A cadaver model.
        J Bone Joint Surg Am. 1998; 80: 474-480
        • Blankevoort L.
        • Huiskes R.
        Validation of a three-dimensional model of the knee.
        J Biomech. 1996; 29: 955-961
        • Elias J.J.
        • Wilson D.R.
        • Adamson R.
        • et al.
        Evaluation of a computational model used to predict the patellofemoral contact pressure distribution.
        J Biomech. 2004; 37: 295-302
        • Wismans J.
        • Veldpaus F.
        • Janssen J.
        • et al.
        A three-dimensional mathematical model of the knee-joint.
        J Biomech. 1980; 13: 677-685
        • Blankevoort L.
        • Kuiper J.H.
        • Huiskes R.
        • et al.
        Articular contact in a three-dimensional model of the knee.
        J Biomech. 1991; 24: 1019-1031
        • van der Helm F.C.
        A finite element musculoskeletal model of the shoulder mechanism.
        J Biomech. 1994; 27: 551-569
        • Brown T.D.
        • DiGioia 3rd, A.M.
        A contact-coupled finite element analysis of the natural adult hip.
        J Biomech. 1984; 17: 437-448
        • Ahmad C.S.
        • Kwak S.D.
        • Ateshian G.A.
        • et al.
        Effects of patellar tendon adhesion to the anterior tibia on knee mechanics.
        Am J Sports Med. 1998; 26: 715-724
        • Kwak S.D.
        • Ahmad C.S.
        • Gardner T.R.
        • et al.
        Hamstrings and iliotibial band forces affect knee kinematics and contact pattern.
        J Orthop Res. 2000; 18: 101-108
        • Cohen Z.A.
        • Henry J.H.
        • McCarthy D.M.
        • et al.
        Computer simulations of patellofemoral joint surgery. Patient-specific models for tuberosity transfer.
        Am J Sports Med. 2003; 31: 87-98
        • Cohen Z.A.
        • Roglic H.
        • Grelsamer R.P.
        • et al.
        Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation.
        Am J Sports Med. 2001; 29: 480-487
        • Hadley N.A.
        • Brown T.D.
        • Weinstein S.L.
        The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation.
        J Orthop Res. 1990; 8: 504-513
        • McErlain D.D.
        • Milner J.S.
        • Ivanov T.G.
        • et al.
        Subchondral cysts create increased intra-osseous stress in early knee OA: a finite element analysis using simulated lesions.
        Bone. 2011; 48: 639-646
        • van Lenthe G.H.
        • Muller R.
        Prediction of failure load using micro-finite element analysis models: towards in vivo strength assessment.
        Drug Discov Today Tech. 2006; 3: 221-229
        • Helgason B.
        • Perilli E.
        • Schileo E.
        • et al.
        Mathematical relationships between bone density and mechanical properties: a literature review.
        Clin Biomech (Bristol, Avon). 2008; 23: 135-146
        • Samosky J.T.
        • Burstein D.
        • Eric Grimson W.
        • et al.
        Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau.
        J Orthop Res. 2005; 23: 93-101
        • MacNeil J.A.
        • Boyd S.K.
        Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
        Bone. 2008; 42: 1203-1213
        • Keyak J.H.
        • Rossi S.A.
        Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories.
        J Biomech. 2000; 33: 209-214
        • Bay B.K.
        Methods and applications of digital volume correlation.
        J Strain Anal Eng. 2008; 43: 745-760
        • Kanamiya T.
        • Naito M.
        • Hara M.
        • et al.
        The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis: clinical and arthroscopic observations.
        Arthroscopy. 2002; 18: 725-729
        • Ito K.
        • Minka M.A.
        • Leunig M.
        • et al.
        Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset.
        J Bone Joint Surg Br. 2001; 83: 171-176
        • Morrison J.B.
        The mechanics of the knee joint in relation to normal walking.
        J Biomech. 1970; 3: 51-61
        • Li K.
        • Zheng L.
        • Tashman S.
        • et al.
        The inaccuracy of surface-measured model-derived tibiofemoral kinematics.
        J Biomech. 2012; 45: 2719-2723
        • Andriacchi T.P.
        • Alexander E.J.
        • Toney M.K.
        • et al.
        A point cluster method for in vivo motion analysis: applied to a study of knee kinematics.
        J Biomech Eng. 1998; 120: 743-749
        • D'Lima D.D.
        • Fregly B.J.
        • Patil S.
        • et al.
        Knee joint forces: prediction, measurement, and significance.
        Proc Inst Mech Eng H. 2012; 226: 95-102
        • Cleather D.J.
        • Bull A.M.
        The development of lower limb musculoskeletal models with clinical relevance is dependent upon the fidelity of the mathematical description of the lower limb. Part 2: patient-specific geometry.
        Proc Inst Mech Eng H. 2012; 226: 133-145
        • Delport H.P.
        • Banks S.A.
        • De Schepper J.
        • et al.
        A kinematic comparison of fixed- and mobile-bearing knee replacements.
        J Bone Joint Surg Br. 2006; 88: 1016-1021
        • Kanisawa I.
        • Banks A.Z.
        • Banks S.A.
        • et al.
        Weight-bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions.
        Knee Surg Sports Traumatol Arthrosc. 2003; 11: 16-22
        • Amiri S.
        • Anglin C.
        • Agbanlog K.
        • et al.
        A model-free feature-based bi-planar RSA method for kinematic analysis of total knee arthroplasty.
        J Biomech Eng. 2012; 134: 031009
        • Karrholm J.
        • Brandsson S.
        • Freeman M.A.
        Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA.
        J Bone Joint Surg Br. 2000; 82: 1201-1203
        • Fleming B.C.
        • Peura G.D.
        • Abate J.A.
        • et al.
        Accuracy and repeatability of Roentgen stereophotogrammetric analysis (RSA) for measuring knee laxity in longitudinal studies.
        J Biomech. 2001; 34: 1355-1359
        • Martin D.E.
        • Greco N.J.
        • Klatt B.A.
        • et al.
        Model-based tracking of the hip: implications for novel analyses of hip pathology.
        J Arthroplasty. 2011; 26: 88-97
        • Fox A.M.
        • Kedgley A.E.
        • Lalone E.A.
        • et al.
        The effect of decreasing computed tomography dosage on radiostereometric analysis (RSA) accuracy at the glenohumeral joint.
        J Biomech. 2011; 44: 2847-2850
        • You B.M.
        • Siy P.
        • Anderst W.
        • et al.
        In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics.
        IEEE Trans Med Imaging. 2001; 20: 514-525
        • Goyal K.
        • Tashman S.
        • Wang J.H.
        • et al.
        In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities.
        Am J Sports Med. 2012; 40: 777-785
        • Anderst W.J.
        • Tashman S.
        A method to estimate in vivo dynamic articular surface interaction.
        J Biomech. 2003; 36: 1291-1299
        • Anderst W.
        • Zauel R.
        • Bishop J.
        • et al.
        Validation of three-dimensional model-based tibio-femoral tracking during running.
        Med Eng Phys. 2009; 31: 10-16
        • Bey M.J.
        • Zauel R.
        • Brock S.K.
        • et al.
        Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics.
        J Biomech Eng. 2006; 128: 604-609
        • Brossmann J.
        • Muhle C.
        • Schroder C.
        • et al.
        Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging.
        Radiology. 1993; 187: 205-212
        • Salsich G.B.
        • Ward S.R.
        • Terk M.R.
        • et al.
        In vivo assessment of patellofemoral joint contact area in individuals who are pain free.
        Clin Orthop. 2003; : 277-284
        • Draper C.E.
        • Besier T.F.
        • Fredericson M.
        • et al.
        Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain.
        J Orthop Res. 2010; 29: 312-317
        • Draper C.E.
        • Santos J.M.
        • Kourtis L.C.
        • et al.
        Feasibility of using real-time MRI to measure joint kinematics in 1.5T and open-bore 0.5T systems.
        J Magn Reson Imaging. 2008; 28: 158-166
        • Powers C.M.
        • Ward S.R.
        • Fredericson M.
        • et al.
        Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study.
        J Orthop Sports Phys Ther. 2003; 33: 677-685
        • von Eisenhart-Rothe R.
        • Siebert M.
        • Bringmann C.
        • et al.
        A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint.
        J Biomech. 2004; 37: 927-934
        • Muhle C.
        • Brossmann J.
        • Heller M.
        Kinematic CT and MR imaging of the patellofemoral joint.
        Eur Radiol. 1999; 9: 508-518
        • Fellows R.A.
        • Hill N.A.
        • Gill H.S.
        • et al.
        Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking.
        J Biomech. 2005; 38: 1643-1652
        • Fellows R.A.
        • Hill N.A.
        • Macintyre N.J.
        • et al.
        Repeatability of a novel technique for in vivo measurement of three-dimensional patellar tracking using magnetic resonance imaging.
        J Magn Reson Imaging. 2005; 22: 145-153
        • Patel V.V.
        • Hall K.
        • Ries M.
        • et al.
        Magnetic resonance imaging of patellofemoral kinematics with weight-bearing.
        J Bone Joint Surg Am. 2003; 85: 2419-2424
        • Kaiser J.
        • Bradford R.
        • Johnson K.
        • et al.
        Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling.
        Magn Reson Med. 2012; ([Epub ahead of print])
        • d'Entremont A.G.
        • Nordmeyer-Massner J.A.
        • Bos C.
        • et al.
        Do dynamic-based MR knee kinematics methods produce the same results as static methods?.
        Magn Reson Med. 2012; ([Epub ahead of print])
        • Sheehan F.T.
        • Drace J.E.
        Quantitative MR measures of three-dimensional patellar kinematics as a research and diagnostic tool.
        Med Sci Sports Exerc. 1999; 31: 1399-1405
        • Sheehan F.T.
        • Zajac F.E.
        • Drace J.E.
        Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics.
        J Biomech. 1998; 31: 21-26
        • Sheehan F.T.
        • Zajac F.E.
        • Drace J.E.
        In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging.
        J Biomech Eng. 1999; 121: 650-656
        • Barrance P.J.
        • Williams G.N.
        • Novotny J.E.
        • et al.
        A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data.
        J Biomech Eng. 2005; 127: 829-837
        • Rebmann A.J.
        • Sheehan F.T.
        Precise 3D skeletal kinematics using fast phase contrast magnetic resonance imaging.
        J Magn Reson Imaging. 2003; 17: 206-213
        • Lerner A.L.
        • Tamez-Pena J.G.
        • Houck J.R.
        • et al.
        The use of sequential MR image sets for determining tibiofemoral motion: reliability of coordinate systems and accuracy of motion tracking algorithm.
        J Biomech Eng. 2003; 125: 246-253
        • Barrance P.J.
        • Williams G.N.
        • Snyder-Mackler L.
        • et al.
        Do ACL-injured copers exhibit differences in knee kinematics?: An MRI study.
        Clin Orthop Relat Res. 2007; 454: 74-80
        • Barrance P.J.
        • Williams G.N.
        • Snyder-Mackler L.
        • et al.
        Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI.
        J Orthop Res. 2006; 24: 132-140
        • Patel V.V.
        • Hall K.
        • Ries M.
        • et al.
        A three-dimensional MRI analysis of knee kinematics.
        J Orthop Res. 2004; 22: 283-292
      1. Draper CE, Besier TF, Santos JM, et al. Patellofemoral kinematic differences exist between high-load and low-load conditions in patients with patellofemoral pain. Paper presented at: American Society of Biomechanics Annual Meeting. State College. Philadelphia, August 26-29, 2009.

        • McWalter E.J.
        • Hunter D.J.
        • Wilson D.R.
        The effect of load magnitude on three-dimensional patellar kinematics in vivo.
        J Biomech. 2010; 43: 1890-1897
        • Besier T.F.
        • Draper C.E.
        • Gold G.E.
        • et al.
        Patellofemoral joint contact area increases with knee flexion and weight-bearing.
        J Orthop Res. 2005; 23: 345-350
        • Gold G.E.
        • Besier T.F.
        • Draper C.E.
        • et al.
        Weight-bearing MRI of patellofemoral joint cartilage contact area.
        J Magn Reson Imaging. 2004; 20: 526-530
        • Heino Brechter J.
        • Powers C.M.
        • Terk M.R.
        • et al.
        Quantification of patellofemoral joint contact area using magnetic resonance imaging.
        Magn Reson Imaging. 2003; 21: 955-959
        • Hinterwimmer S.
        • Gotthardt M.
        • von Eisenhart-Rothe R.
        • et al.
        In vivo contact areas of the knee in patients with patellar subluxation.
        J Biomech. 2005; 38: 2095-2101
        • Hinterwimmer S.
        • von Eisenhart-Rothe R.
        • Siebert M.
        • et al.
        Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis.
        Clin Biomech (Bristol, Avon). 2004; 19: 704-710
        • Nakagawa S.
        • Kadoya Y.
        • Kobayashi A.
        • et al.
        Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging.
        J Bone Joint Surg Am. 2003; 85: 1238-1242
        • Powers C.M.
        • Ward S.R.
        • Chan L.D.
        • et al.
        The effect of bracing on patella alignment and patellofemoral joint contact area.
        Med Sci Sports Exerc. 2004; 36: 1226-1232
        • Ward S.R.
        • Powers C.M.
        The influence of patella alta on patellofemoral joint stress during normal and fast walking.
        Clin Biomech (Bristol, Avon). 2004; 19: 1040-1047
        • Ward S.R.
        • Terk M.R.
        • Powers C.M.
        Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing.
        J Bone Joint Surg Am. 2007; 89: 1749-1755
        • Connolly K.D.
        • Ronsky J.L.
        • Westover L.M.
        • et al.
        Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome.
        J Biomech. 2009; 42: 2802-2807
        • Shin C.S.
        • Carpenter R.D.
        • Majumdar S.
        • et al.
        Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging.
        Arthroscopy. 2009; 25: 1214-1223
        • Lalone E.A.
        • McDonald C.P.
        • Ferreira L.M.
        • et al.
        Development of an image-based technique to examine joint congruency at the elbow.
        Comput Methods Biomech Biomed Engin. 2012; ([Epub ahead of print])
        • Borotikar B.S.
        • Sipprell 3rd, W.H.
        • Wible E.E.
        • et al.
        A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.
        J Biomech. 2012; 45: 1117-1122
        • Hosseini A.
        • Van de Velde S.
        • Gill T.J.
        • et al.
        Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.
        J Orthop Res. 2012; 30: 1781-1788
        • Subburaj K.
        • Souza R.B.
        • Stehling C.
        • et al.
        Association of MR relaxation and cartilage deformation in knee osteoarthritis.
        J Orthop Res. 2012; 30: 919-926
        • Shin C.S.
        • Souza R.B.
        • Kumar D.
        • et al.
        In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.
        J Magn Reson Imaging. 2011; 34: 1405-1413
        • Yao J.
        • Lancianese S.L.
        • Hovinga K.R.
        • et al.
        Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion.
        J Orthop Res. 2008; 26: 673-684
        • Yao J.
        • Salo A.D.
        • Lee J.
        • et al.
        Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
        J Biomech. 2008; 41: 390-398
        • Connolly K.D.
        • Ronsky J.L.
        • Westover L.M.
        • et al.
        Analysis techniques for congruence of the patellofemoral joint.
        J Biomech Eng. 2009; 131: 124503
      2. McWalter EJ, O'Kane CO, FitzPatrick DP, et al. Validation of an MRI-based method to assess patellofemoral joint contact areas in loaded knee flexion in vivo. J Magn Reson Imaging, in press.

        • Goto A.
        • Moritomo H.
        • Murase T.
        • et al.
        In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging.
        J Shoulder Elbow Surg. 2004; 13: 441-447
        • Lalone E.A.
        • Peters T.M.
        • King G.W.
        • et al.
        Accuracy assessment of an imaging technique to examine ulnohumeral joint congruency during elbow flexion.
        Comput Aided Surg. 2012; 17: 142-152
        • Chan D.D.
        • Neu C.P.
        • Hull M.L.
        Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging.
        Magn Reson Med. 2009; 61: 989-993
        • Chan D.D.
        • Neu C.P.
        • Hull M.L.
        In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
        Osteoarthritis Cartilage. 2009; 17: 1461-1468
        • Greaves L.L.
        • Gilbart M.K.
        • Yung A.
        • et al.
        Deformation and recovery of cartilage in the intact hip under physiological loads using 7T MRI.
        J Biomech. 2009; 42: 349-354
        • Halder A.
        • Kutzner I.
        • Graichen F.
        • et al.
        Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients.
        J Bone Joint Surg Am. 2012; 94: 1023-1029
        • Felson D.T.
        Osteoarthritis as a disease of mechanics.
        Osteoarthritis Cartilage. 2012; ([Epub ahead of print])
        • Laxafoss E.
        • Jacobsen S.
        • Gosvig K.K.
        • et al.
        The alignment of the knee joint in relationship to age and osteoarthritis: the Copenhagen Osteoarthritis Study.
        Skeletal Radiol. 2012; ([Epub ahead of print])
        • Reid S.M.
        • Graham R.B.
        • Costigan P.A.
        Differentiation of young and older adult stair climbing gait using principal component analysis.
        Gait Posture. 2010; 31: 197-203
        • Cahue S.
        • Dunlop D.
        • Hayes K.
        • et al.
        Varus-valgus alignment in the progression of patellofemoral osteoarthritis.
        Arthritis Rheum. 2004; 50: 2184-2190
        • Elahi S.
        • Cahue S.
        • Felson D.T.
        • et al.
        The association between varus-valgus alignment and patellofemoral osteoarthritis.
        Arthritis Rheum. 2000; 43: 1874-1880
        • Harrison M.M.
        • Cooke T.D.
        • Fisher S.B.
        • et al.
        Patterns of knee arthrosis and patellar subluxation.
        Clin Orthop Relat Res. 1994; : 56-63
        • Sharma L.
        The role of proprioceptive deficits, ligamentous laxity, and malalignment in development and progression of knee osteoarthritis.
        J Rheumatol Suppl. 2004; 70: 87-92
        • Sharma L.
        • Song J.
        • Felson D.T.
        • et al.
        The role of knee alignment in disease progression and functional decline in knee osteoarthritis.
        JAMA. 2001; 286: 188-195
        • Sharma L.
        • Eckstein F.
        • Song J.
        • et al.
        Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees.
        Arthritis Rheum. 2008; 58: 1716-1726
        • Hunter D.J.
        • Niu J.
        • Felson D.T.
        • et al.
        Knee alignment does not predict incident osteoarthritis: the Framingham Osteoarthritis Study.
        Arthritis Rheum. 2007; 56: 1212-1218
        • Felson D.T.
        • Goggins J.
        • Niu J.
        • et al.
        The effect of body weight on progression of knee osteoarthritis is dependent on alignment.
        Arthritis Rheum. 2004; 50: 3904-3909
        • Niu J.
        • Zhang Y.Q.
        • Torner J.
        • et al.
        Is obesity a risk factor for progressive radiographic knee osteoarthritis?.
        Arthritis Rheum. 2009; 61: 329-335
        • Moisio K.
        • Chang A.
        • Eckstein F.
        • et al.
        Varus-valgus alignment: reduced risk of subsequent cartilage loss in the less loaded compartment.
        Arthritis Rheum. 2011; 63: 1002-1009
        • Cerejo R.
        • Dunlop D.D.
        • Cahue S.
        • et al.
        The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease.
        Arthritis Rheum. 2002; 46: 2632-2636
        • Williams A.
        • Sharma L.
        • McKenzie C.A.
        • et al.
        Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment.
        Arthritis Rheum. 2005; 52: 3528-3535
        • Friedrich K.M.
        • Shepard T.
        • Chang G.
        • et al.
        Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis?.
        Eur Radiol. 2010; 20: 1532-1538
        • Kalichman L.
        • Zhang Y.
        • Niu J.
        • et al.
        The association between patellar alignment on magnetic resonance imaging and radiographic manifestations of knee osteoarthritis.
        Arthritis Res Ther. 2007; 9: R26
        • Kalichman L.
        • Zhang Y.
        • Niu J.
        • et al.
        The association between patellar alignment and patellofemoral joint osteoarthritis features–an MRI study.
        Rheumatology (Oxford). 2007; 46: 1303-1308
        • Kalichman L.
        • Zhu Y.
        • Zhang Y.
        • et al.
        The association between patella alignment and knee pain and function: an MRI study in persons with symptomatic knee osteoarthritis.
        Osteoarthritis Cartilage. 2007; 15: 1235-1240
        • Hunter D.J.
        • Zhang Y.Q.
        • Niu J.B.
        • et al.
        Patella malalignment, pain and patellofemoral progression: the Health ABC Study.
        Osteoarthritis Cartilage. 2007; 15: 1120-1127
        • Stefanik J.J.
        • Zhu Y.
        • Zumwalt A.C.
        • et al.
        Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the Multicenter Osteoarthritis Study.
        Arthritis Care Res (Hoboken). 2010; 62: 1258-1265
        • Gross K.D.
        • Niu J.
        • Stefanik J.J.
        • et al.
        Breaking the Law of Valgus: the surprising and unexplained prevalence of medial patellofemoral cartilage damage.
        Ann Rheum Dis. 2012; 71: 1827-1832
        • McAlindon T.
        • Zhang Y.
        • Hannan M.
        • et al.
        Are risk factors for patellofemoral and tibiofemoral knee osteoarthritis different?.
        J Rheumatol. 1996; 23: 332-337
        • Cicuttini F.M.
        • Spector T.
        • Baker J.
        Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee.
        J Rheumatol. 1997; 24: 1164-1167
        • Cooper C.
        • McAlindon T.
        • Snow S.
        • et al.
        Mechanical and constitutional risk factors for symptomatic knee osteoarthritis: differences between medial tibiofemoral and patellofemoral disease.
        J Rheumatol. 1994; 21: 307-313
        • Hunter D.J.
        • Zhang Y.
        • Niu J.
        • et al.
        Structural factors associated with malalignment in knee osteoarthritis: the Boston Osteoarthritis Knee Study.
        J Rheumatol. 2005; 32: 2192-2199
        • Zhang Y.
        • Hunter D.J.
        • Nevitt M.C.
        • et al.
        Association of squatting with increased prevalence of radiographic tibiofemoral knee osteoarthritis: the Beijing Osteoarthritis Study.
        Arthritis Rheum. 2004; 50: 1187-1192
        • Englund M.
        • Lohmander L.S.
        Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population.
        Ann Rheum Dis. 2005; 64: 1721-1726
        • Hunter D.J.
        • Niu J.
        • Zhang Y.
        • et al.
        Knee height, knee pain, and knee osteoarthritis: the Beijing Osteoarthritis Study.
        Arthritis Rheum. 2005; 52: 1418-1423
        • Baliunas A.J.
        • Hurwitz D.E.
        • Ryals A.B.
        • et al.
        Increased knee joint loads during walking are present in subjects with knee osteoarthritis.
        Osteoarthritis Cartilage. 2002; 10: 573-579
        • Foroughi N.
        • Smith R.
        • Vanwanseele B.
        The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review.
        Knee. 2009; 16: 303-309
        • Mundermann A.
        • Dyrby C.O.
        • Hurwitz D.E.
        • et al.
        Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed.
        Arthritis Rheum. 2004; 50: 1172-1178
        • Maly M.R.
        • Robbins S.M.
        • Stratford P.W.
        • et al.
        Cumulative knee adductor load distinguishes between healthy and osteoarthritic knees-A proof of principle study.
        Gait Posture. 2012; ([Epub ahead of print])
        • Mundermann A.
        • Dyrby C.O.
        • Andriacchi T.P.
        Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking.
        Arthritis Rheum. 2005; 52: 2835-2844
        • Astephen J.L.
        • Deluzio K.J.
        • Caldwell G.E.
        • et al.
        Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels.
        J Biomech. 2008; 41: 868-876
        • Hurwitz D.E.
        • Hulet C.H.
        • Andriacchi T.P.
        • et al.
        Gait compensations in patients with osteoarthritis of the hip and their relationship to pain and passive hip motion.
        J Orthop Res. 1997; 15: 629-635
        • McGibbon C.A.
        • Krebs D.E.
        Compensatory gait mechanics in patients with unilateral knee arthritis.
        J Rheumatol. 2002; 29: 2410-2419
        • Chang A.
        • Hayes K.
        • Dunlop D.
        • et al.
        Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression.
        Arthritis Rheum. 2005; 52: 3515-3519
        • Shakoor N.
        • Hurwitz D.E.
        • Block J.A.
        • et al.
        Asymmetric knee loading in advanced unilateral hip osteoarthritis.
        Arthritis Rheum. 2003; 48: 1556-1561
        • Creaby M.W.
        • Bennell K.L.
        • Hunt M.A.
        Gait differs between unilateral and bilateral knee osteoarthritis.
        Arch Phys Med Rehabil. 2012; 93: 822-827
        • Chang A.
        • Hurwitz D.
        • Dunlop D.
        • et al.
        The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis.
        Ann Rheum Dis. 2007; 66: 1271-1275
        • Anderson D.D.
        • Marsh J.L.
        • Brown T.D.
        The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures.
        Iowa Orthop J. 2011; 31: 1-20
        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • et al.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
        Am J Sports Med. 2007; 35: 1756-1769
        • Englund M.
        • Joud A.
        • Geborek P.
        • et al.
        Prevalence and incidence of rheumatoid arthritis in southern Sweden 2008 and their relation to prescribed biologics.
        Rheumatology (Oxford). 2010; 49: 1563-1569
        • Crema M.D.
        • Roemer F.W.
        • Felson D.T.
        • et al.
        Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis Study.
        Radiology. 2012; 264: 494-503
        • Englund M.
        • Felson D.T.
        • Guermazi A.
        • et al.
        Risk factors for medial meniscal pathology on knee MRI in older US adults: a multicentre prospective cohort study.
        Ann Rheum Dis. 2011; 70: 1733-1739
        • Englund M.
        • Guermazi A.
        • Gale D.
        • et al.
        Incidental meniscal findings on knee MRI in middle-aged and elderly persons.
        N Engl J Med. 2008; 359: 1108-1115
        • Englund M.
        • Guermazi A.
        • Roemer F.W.
        • et al.
        Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study.
        Ann Rheum Dis. 2010; 69: 1796-1802
        • Lohmander L.S.
        • Felson D.
        Can we identify a ‘high risk’ patient profile to determine who will experience rapid progression of osteoarthritis?.
        Osteoarthritis Cartilage. 2004; 12: S49-S52
        • von Porat A.
        • Roos E.M.
        • Roos H.
        High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes.
        Ann Rheum Dis. 2004; 63: 269-273
        • Amin S.
        • Guermazi A.
        • Lavalley M.P.
        • et al.
        Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis.
        Osteoarthritis Cartilage. 2008; 16: 897-902
        • Hernandez-Molina G.
        • Guermazi A.
        • Niu J.
        • et al.
        Central bone marrow lesions in symptomatic knee osteoarthritis and their relationship to anterior cruciate ligament tears and cartilage loss.
        Arthritis Rheum. 2008; 58: 130-136
        • Chaudhari A.M.
        • Briant P.L.
        • Bevill S.L.
        • et al.
        Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury.
        Med Sci Sports Exerc. 2008; 40: 215-222
        • Harris W.H.
        Etiology of osteoarthritis of the hip.
        Clin Orthop. 1986; : 20-33
        • Imam S.
        • Khanduja V.
        Current concepts in the diagnosis and management of femoroacetabular impingement.
        Int Orthop. 2011; 35: 1427-1435
        • Beck M.
        • Kalhor M.
        • Leunig M.
        • et al.
        Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip.
        J Bone Joint Surg Br. 2005; 87: 1012-1018
        • Beck M.
        • Leunig M.
        • Parvizi J.
        • et al.
        Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment.
        Clin Orthop. 2004; : 67-73
        • Bardakos N.V.
        • Villar R.N.
        Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up.
        J Bone Joint Surg Br. 2009; 91: 162-169
        • Pollard T.C.
        • McNally E.G.
        • Wilson D.C.
        • et al.
        Localized cartilage assessment with three-dimensional dGEMRIC in asymptomatic hips with normal morphology and cam deformity.
        J Bone Joint Surg Am. 2010; 92: 2557-2569
        • Reichenbach S.
        • Juni P.
        • Werlen S.
        • et al.
        Prevalence of cam-type deformity on hip magnetic resonance imaging in young males: a cross-sectional study.
        Arthritis Care Res (Hoboken). 2010; 62: 1319-1327
        • Laborie L.B.
        • Lehmann T.G.
        • Engesaeter I.O.
        • et al.
        Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults.
        Radiology. 2011; 260: 494-502
        • Coventry M.B.
        Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee. A preliminary report.
        J Bone Joint Surg Am. 1965; 47: 984-990
        • Wakabayashi S.
        • Akizuki S.
        • Takizawa T.
        • et al.
        A comparison of the healing potential of fibrillated cartilage versus eburnated bone in osteoarthritic knees after high tibial osteotomy: an arthroscopic study with 1-year follow-up.
        Arthroscopy. 2002; 18: 272-278
        • Odenbring S.
        • Egund N.
        • Lindstrand A.
        • et al.
        Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study.
        Clin Orthop. 1992; : 210-216
        • Ng V.Y.
        • Arora N.
        • Best T.M.
        • et al.
        Efficacy of surgery for femoroacetabular impingement: a systematic review.
        Am J Sports Med. 2010; 38: 2337-2345
        • Clohisy J.C.
        • St John L.C.
        • Schutz A.L.
        Surgical treatment of femoroacetabular impingement: a systematic review of the literature.
        Clin Orthop Relat Res. 2010; 468: 555-564
        • Reeves N.D.
        • Bowling F.L.
        Conservative biomechanical strategies for knee osteoarthritis.
        Nat Rev Rheumatol. 2011; 7: 113-122
        • Rinonapoli E.
        • Mancini G.B.
        • Corvaglia A.
        • et al.
        Tibial osteotomy for varus gonarthrosis. A 10- to 21-year followup study.
        Clin Orthop. 1998; : 185-193
        • W-Dahl A.
        • Robertsson O.
        • Lohmander L.S.
        High tibial osteotomy in Sweden, 1998–2007: a population-based study of the use and rate of revision to knee arthroplasty.
        Acta Orthop. 2012; 83: 244-248