Advertisement

Lessons from Cardiac and Vascular Biopsies from Patients with and without Inflammatory Rheumatic Diseases

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ingegnoli F.
        • Buoli M.
        • Antonucci F.
        • et al.
        The Link Between Autonomic Nervous System and Rheumatoid Arthritis: From Bench to Bedside.
        Front Med. 2020; 7
        • Hollan I.
        Vascular Inflammation in Systemic Rheumatic Diseases.
        Curr Med Litterature - Rheumatol. 2011; 30: 33-45
        • Raynor W.Y.
        • Park P.S.U.
        • Borja A.J.
        • et al.
        PET-Based Imaging with (18)F-FDG and (18)F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders.
        Diagnostics (Basel, Switzerland). 2021; 11
        • Gravallese E.M.
        • Corson J.M.
        • Coblyn J.S.
        • et al.
        Rheumatoid aortitis: a rarely recognized but clinically significant entity.
        Medicine (Baltimore). 1989; 68: 95-106
        • Bely M.
        • Apathy A.
        • Beke-Martos E.
        Cardiac changes in rheumatoid arthritis.
        Acta MorpholHung. 1992; 40: 149-186
        • Higuchi M.L.
        • Gutierrez P.S.
        • Bezerra H.G.
        • et al.
        Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries.
        Arq BrasCardiol. 2002; 79: 20-24
        • Aubry M.C.
        • Maradit-Kremers H.
        • Reinalda M.S.
        • et al.
        Differences in atherosclerotic coronary heart disease between subjects with and without rheumatoid arthritis.
        JRheumatol. 2007; 34: 937-942
        • Aubry M.C.
        • Riehle D.L.
        • Edwards W.D.
        • et al.
        B-Lymphocytes in plaque and adventitia of coronary arteries in two patients with rheumatoid arthritis and coronary atherosclerosis: preliminary observations.
        CardiovascPathol. 2004; 13: 233-236
        • Hollan I.
        Vascular inflammation in rheumatic and non-rheumatic patients: a controlled study of biopsy specimens obtained during coronary artery surgery (Feiring heart biopsy study).
        University of Oslo, Oslo2009: 2-48
        • Hollan I.
        • Scott H.
        • Saatvedt K.
        • et al.
        Inflammatory rheumatic disease and smoking are predictors of aortic inflammation: a controlled study of biopsy specimens obtained at coronary artery surgery.
        Arthritis Rheum. 2007; 56: 2072-2079
        • Semb A.G.
        • Rollefstad S.
        • Provan S.A.
        • et al.
        Carotid plaque characteristics and disease activity in rheumatoid arthritis.
        J Rheumatol. 2013; 40: 359-368
        • Karpouzas G.A.
        • Malpeso J.
        • Choi T.Y.
        • et al.
        Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease.
        Ann Rheum Dis. 2014; 73: 1797-1804
        • Andersen J.K.
        • Oma I.
        • Prayson R.A.
        • et al.
        Inflammatory cell infiltrates in the heart of patients with coronary artery disease with and without inflammatory rheumatic disease: a biopsy study.
        Arthritis Res Ther. 2016; 18: 232
        • Hollan I.
        • Bottazzi B.
        • Førre Ø.
        • et al.
        Pentraxin 3 (PTX), a Novel Cardiovascular Biomarker, is Expressed in Vascular Specimens of Patients with Coronary Artery Disease (CAD).
        7th International Congress on autoimmunity. 2010;
        • Nakajima A.
        • Sugiyama T.
        • Araki M.
        • et al.
        Plaque Rupture, Compared With Plaque Erosion, Is Associated With a Higher Level of Pancoronary Inflammation.
        JACC Cardiovascular imaging. 2021;
        • Maiellaro K.
        • Taylor W.R.
        The role of the adventitia in vascular inflammation.
        CardiovascRes. 2007; 75: 640-648
        • Blassova T.
        • Tonar Z.
        • Tomasek P.
        • et al.
        Inflammatory cell infiltrates, hypoxia, vascularization, pentraxin 3 and osteoprotegerin in abdominal aortic aneurysms - A quantitative histological study.
        PloS one. 2019; 14: e0224818
        • Skotsimara G.
        • Antonopoulos A.
        • Oikonomou E.
        • et al.
        Aortic Wall Inflammation in the Pathogenesis, Diagnosis and Treatment of Aortic Aneurysms.
        Inflammation. 2022;
        • Hollan I.
        • Dessein P.H.
        • Ronda N.
        • et al.
        Prevention of cardiovascular disease in rheumatoid arthritis.
        Autoimmun Rev. 2015; 14: 952-969
        • Murray E.C.
        • Nosalski R.
        • MacRitchie N.
        • et al.
        Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective.
        Cardiovasc Res. 2021; 117: 2589-2609
        • Kawabe J-i
        • Hasebe N.
        Role of the Vasa Vasorum and Vascular Resident Stem Cells in Atherosclerosis.
        Biomed Research International. 2014; 2014: 701571
        • Kim H.W.
        • Shi H.
        • Winkler M.A.
        • et al.
        Perivascular Adipose Tissue and Vascular Perturbation/Atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2020; 40: 2569-2576
        • Hollan I.
        • Meroni P.L.
        • Ahearn J.M.
        • et al.
        Cardiovascular disease in autoimmune rheumatic diseases.
        Autoimmun Rev. 2013; 12: 1004-1015
        • Rojo-Leyva F.
        • Ratliff N.B.
        • Cosgrove III, D.M.
        • et al.
        Study of 52 patients with idiopathic aortitis from a cohort of 1,204 surgical cases.
        Arthritis Rheum. 2000; 43: 901-907
        • Hollan I.
        • Prayson R.
        • Saatvedt K.
        • et al.
        Inflammatory cell infiltrates in vessels with different susceptibility to atherosclerosis in rheumatic and non-rheumatic patients.
        CircJ. 2008; 72: 1986-1992
        • Karpouzas G.A.
        • Rezaeian P.
        • Ormseth S.R.
        • et al.
        Epicardial Adipose Tissue Volume As a Marker of Subclinical Coronary Atherosclerosis in Rheumatoid Arthritis.
        Arthritis Rheumatol (Hoboken, NJ). 2021; 73: 1412-1420
        • Ito H.
        • Wakatsuki T.
        • Yamaguchi K.
        • et al.
        Atherosclerotic Coronary Plaque Is Associated With Adventitial Vasa Vasorum and Local Inflammation in Adjacent Epicardial Adipose Tissue in Fresh Cadavers.
        Circ J. 2020; 84: 769-775
        • Pavillard L.E.
        • Marín-Aguilar F.
        • Bullon P.
        • et al.
        Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns.
        Pharmacol Res. 2018; 131: 44-50
        • Curran S.A.
        • Hollan I.
        • Erridge C.
        • et al.
        Bacteria in the Adventitia of Cardiovascular Disease Patients with and without Rheumatoid Arthritis.
        PLoSOne. 2014; 9: e98627
        • Marques da S.R.
        • Caugant D.A.
        • Eribe E.R.
        • et al.
        Bacterial diversity in aortic aneurysms determined by 16S ribosomal RNA gene analysis.
        J Vascsurg. 2006; 44: 1055-1060
        • Adegoke A.A.
        • Stenström T.A.
        • Okoh A.I.
        Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy.
        Front Microbiol. 2017; 8: 2276
        • Li L.
        • Tarrand J.J.
        • Han X.Y.
        Microbiological and clinical features of four cases of catheter-related infection by Methylobacterium radiotolerans.
        J Clin Microbiol. 2015; 53: 1375-1379
        • Chen R.
        • Qi X.
        • Ma B.
        • et al.
        First case of infective endocarditis caused by Methylobacterium radiotolerans.
        Eur J Clin Microbiol Infect Dis. 2020; 39: 1785-1788
        • Ahlström M.G.
        • Knudsen J.D.
        • Hertz F.B.
        Stenotrophomonas maltophilia bacteraemia: 61 cases in a tertiary hospital in Denmark.
        Infect Dis (Lond). 2022; 54: 26-35
        • Windhorst S.
        • Frank E.
        • Georgieva D.N.
        • et al.
        The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia: characterization of the protein and molecular cloning of the gene.
        J Biol Chem. 2002; 277: 11042-11049
        • Muir P.
        • Oldenhoff W.E.
        • Hudson A.P.
        • et al.
        Detection of DNA from a range of bacterial species in the knee joints of dogs with inflammatory knee arthritis and associated degenerative anterior cruciate ligament rupture.
        MicrobPathog. 2007; 42: 47-55
        • Pinol I.
        • Alier A.
        • Hinarejos P.
        • et al.
        Septic arthritis of the knee by Stenotrophomonas maltophilia.
        Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia. 2012; 25: 218-219
        • Chiu L.Q.
        • Wang W.
        A case of unusual Gram-negative bacilli septic arthritis in an immunocompetent patient.
        Singapore Med J. 2013; 54: e164-e168
        • Siala M.
        • Gdoura R.
        • Fourati H.
        • et al.
        Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis.
        Arthritis ResTher. 2009; 11: R102
        • Sun W.
        • Dong L.
        • Kaneyama K.
        • et al.
        Bacterial diversity in synovial fluids of patients with TMD determined by cloning and sequencing analysis of the 16S ribosomal RNA gene.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105: 566-571
        • Grub C.
        • Brunborg C.
        • Hasseltvedt V.
        • et al.
        Antibodies to common infectious agents in coronary artery disease patients with and without rheumatic conditions.
        Rheumatology(Oxford). 2011; 51: 679-685
        • Fent G.
        • Mankia K.
        • Erhayiem B.
        • et al.
        First cardiovascular MRI study in individuals at risk of rheumatoid arthritis detects abnormal aortic stiffness suggesting an anti-citrullinated peptide antibody-mediated role for accelerated atherosclerosis.
        Ann Rheum Dis. 2019; 78: 1138-1140
        • Ahmed A.
        • Hollan I.
        • Mikkelsen K.
        • et al.
        The aortic adventitia of coronary bypass patients with rheumatoid arthritis provides a survival niche, and antigen depot, for B cells.
        Annu Scientific Meet Am Coll Rheumatol. 2009;
        • Hollan I.
        • Nebuloni M.
        • Bottazzi B.
        • et al.
        Pentraxin 3, a novel cardiovascular biomarker, is expressed in aortic specimens of patients with coronary artery disease with and without rheumatoid arthritis.
        Cardiovasc Pathol : official J Soc Cardiovasc Pathol. 2013; 22: 324-331
        • Ahmed A.
        • Hollan I.
        • Curran S.A.
        • et al.
        Rheumatoid arthritis patients have a pro-atherogenic cytokine microenvironment in the aortic adventitia.
        Arthritis Rheumatol (Hoboken, NJ). 2016; 68: 1361-1366
        • Chen W.Y.
        • Tsai T.H.
        • Yang J.L.
        • et al.
        Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases.
        Cell Physiol Biochem. 2018; 49: 349-358
        • Hollan I.
        • Bottazzi B.
        • Cuccovillo I.
        • et al.
        Increased levels of serum pentraxin 3, a novel cardiovascular biomarker, in patients with inflammatory rheumatic disease.
        Arthritis Care Res(Hoboken). 2010; 62: 378-385
        • Brilland B.
        • Vinatier E.
        • Subra J.F.
        • et al.
        Anti-Pentraxin Antibodies in Autoimmune Diseases: Bystanders or Pathophysiological Actors?.
        Front Immunol. 2020; 11: 626343
        • Ding K.
        • Shi Z.
        • Qian C.
        • et al.
        Higher Plasma Pentraxin-3 Level Predicts Adverse Clinical Outcomes in Patients With Coronary Artery Disease: A Meta-Analysis of Cohort Studies.
        Front Cardiovasc Med. 2021; 8: 726289
        • Ristagno G.
        • Fumagalli F.
        • Bottazzi B.
        • et al.
        Pentraxin 3 in Cardiovascular Disease.
        Front Immunol. 2019; 10: 823
        • Ortega-Hernandez O.D.
        • Bassi N.
        • Shoenfeld Y.
        • et al.
        The long pentraxin 3 and its role in autoimmunity.
        Semin Arthritis Rheum. 2009; 39: 38-54
        • Guo T.
        • Ke L.
        • Qi B.
        • et al.
        PTX3 is located at the membrane of late apoptotic macrophages and mediates the phagocytosis of macrophages.
        J Clin Immunol. 2012; 32: 330-339
        • Doni A.
        • Musso T.
        • Morone D.
        • et al.
        An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode.
        J Exp Med. 2015; 212: 905-925
        • Wang S.
        • Song R.
        • Wang Z.
        • et al.
        S100A8/A9 in Inflammation.
        Front Immunol. 2018; 9: 1298
        • Engelen S.E.
        • Robinson A.J.B.
        • Zurke Y.X.
        • et al.
        Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?.
        Nat Rev Cardiol. 2022; : 1-21
        • Shields K.J.
        • Stolz D.
        • Watkins S.C.
        • et al.
        Complement proteins C3 and C4 bind to collagen and elastin in the vascular wall: a potential role in vascular stiffness and atherosclerosis.
        ClinTranslSci. 2011; 4: 146-152
        • Shields K.J.
        • Mollnes T.E.
        • Eidet J.R.
        • et al.
        Plasma complement and vascular complement deposition in patients with coronary artery disease with and without inflammatory rheumatic diseases.
        PloS one. 2017; 12: e0174577
        • Copenhaver M.
        • Yu C.Y.
        • Hoffman R.P.
        Complement Components, C3 and C4, and the Metabolic Syndrome.
        Curr Diabetes Rev. 2019; 15: 44-48
        • Porsch F, Binder CJ
        Impact of B-Cell–Targeted Therapies on Cardiovascular Disease.
        Arteriosclerosis, Thrombosis, and Vascular Biology. 2019; 39: 1705-1714
        • Jin Y.
        • Kang E.H.
        • Brill G.
        • et al.
        Cardiovascular (CV) Risk after Initiation of Abatacept versus TNF Inhibitors in Rheumatoid Arthritis Patients with and without Baseline CV Disease.
        J Rheumatol. 2018; 45: 1240-1248
        • Blyszczuk P.
        • Szekanecz Z.
        Pathogenesis of ischaemic and non-ischaemic heart diseases in rheumatoid arthritis.
        RMD Open. 2020; 6
        • Boland J.
        • Long C.
        Update on the Inflammatory Hypothesis of Coronary Artery Disease.
        Curr Cardiol Rep. 2021; 23: 6
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Ronda N.
        • Greco D.
        • Adorni M.P.
        • et al.
        New anti-atherosclerotic activity of methotrexate and adalimumab: Complementary effects on lipoprotein function and macrophage cholesterol metabolism.
        Arthritis Rheumatol (Hoboken, NJ). 2015; 67: 1155-1164
        • Thompson P.L.
        • Nidorf S.M.
        Colchicine: an affordable anti-inflammatory agent for atherosclerosis.
        Curr Opin Lipidol. 2018; 29: 467-473
        • Fostad I.
        • Eidet J.R.
        • Lyberg T.
        • et al.
        The Increased Risk of Cardiovascular Disease in Rheumatoid Arthritis May be Related to NUPR1 Activation.
        Ann Rheum Dis. 2015; 74: 686
        • Oma I.
        • Olstad O.K.
        • Andersen J.K.
        • et al.
        Differential expression of vitamin D associated genes in the aorta of coronary artery disease patients with and without rheumatoid arthritis.
        PloS one. 2018; 13: e0202346
        • Breland U.M.
        • Hollan I.
        • Saatvedt K.
        • et al.
        Inflammatory markers in patients with coronary artery disease with and without inflammatory rheumatic disease.
        Rheumatology. 2010; : keq005
        • Oma I.
        • Andersen J.K.
        • Lyberg T.
        • et al.
        Plasma vitamin D levels and inflammation in the aortic wall of patients with coronary artery disease with and without inflammatory rheumatic disease.
        Scand J Rheumatol. 2016; : 1-8
        • Grundtman C.
        • Hollan I.
        • Forre O.T.
        • et al.
        Cardiovascular disease in patients with inflammatory rheumatic disease is associated with up-regulation of markers of inflammation in cardiac microvessels and cardiomyocytes.
        Arthritis Rheum. 2010; 62: 667-673
        • Malczuk E.
        • Tłustochowicz W.
        • Kramarz E.
        • et al.
        Early Myocardial Changes in Patients with Rheumatoid Arthritis without Known Cardiovascular Diseases-A Comprehensive Cardiac Magnetic Resonance Study.
        Diagnostics (Basel, Switzerland). 2021; 11
        • Quagliariello V.
        • Paccone A.
        • Iovine M.
        • et al.
        Interleukin-1 blocking agents as promising strategy for prevention of anticancer drug-induced cardiotoxicities: possible implications in cancer patients with COVID-19.
        Eur Rev Med Pharmacol Sci. 2021; 25: 6797-6812
        • Bianchi M.E.
        • Crippa M.P.
        • Manfredi A.A.
        • et al.
        High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair.
        Immunol Rev. 2017; 280: 74-82
        • Foglio E.
        • Pellegrini L.
        • Russo M.A.
        • et al.
        HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction.
        Cells. 2022; 11: 216
        • Andersson U.
        • Yang H.
        • Harris H.
        Extracellular HMGB1 as a therapeutic target in inflammatory diseases.
        Expert Opin Ther Targets. 2018; 22: 263-277
        • Bruton M.
        • Hollan I.
        • Xiao J.
        • et al.
        Expression of High Mobility Group Protein B1 in Cardiac Tissue of Elderly Patients with Coronary Artery Disease with or without Inflammatory Rheumatic Disease.
        Gerontology. 2017; 63: 337-349
        • Singh G.B.
        • Zhang Y.
        • Boini K.M.
        • et al.
        High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction.
        Int J Mol Sci. 2019; 20
        • Wang H.H.
        • Lin M.
        • Xiang G.D.
        Serum HMGB1 levels and its association with endothelial dysfunction in patients with polycystic ovary syndrome.
        Physiol Res. 2018; 67: 911-919
        • Yang H.
        • Wang H.
        • Andersson U.
        Targeting Inflammation Driven by HMGB1.
        Front Immunol. 2020; 11
        • VanPatten S.
        • Al-Abed Y.
        High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target.
        J Med Chem. 2018; 61: 5093-5107
        • Sedding D.G.
        • Boyle E.C.
        • Demandt J.A.F.
        • et al.
        Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease.
        Front Immunol. 2018; 9: 706
        • Santilli S.M.
        • Fiegel V.D.
        • Knighton D.R.
        Changes in the aortic wall oxygen tensions of hypertensive rabbits. Hypertension and aortic wall oxygen.
        Hypertension. 1992; 19: 33-39
        • Mengozzi A.
        • Pugliese N.R.
        • Taddei S.
        • et al.
        Microvascular Inflammation and Cardiovascular Prevention: The Role of Microcirculation as Earlier Determinant of Cardiovascular Risk.
        High Blood Press Cardiovasc Prev. 2022; 29: 41-48
        • Tracy E.P.
        • Steilberg V.
        • Rowe G.
        • et al.
        State of the Field: Cellular Therapy Approaches in Microvascular Regeneration.
        Am J Physiol Heart Circ Physiol. 2022; 322 (H647-h680)
        • Tarbell J.
        • Mahmoud M.
        • Corti A.
        • et al.
        The role of oxygen transport in atherosclerosis and vascular disease.
        J R Soc Interf. 2020; 17: 20190732
        • Rafeh R.
        • Viveiros A.
        • Oudit G.Y.
        • et al.
        Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease.
        Clin Sci (London, Engl : 1979). 2020; 134: 827-851
        • Ahmadieh S.
        • Kim H.W.
        • Weintraub N.L.
        Potential role of perivascular adipose tissue in modulating atherosclerosis.
        Clin Sci (London, Engl: 1979). 2020; 134: 3-13
        • Elkhatib M.A.W.
        • Mroueh A.
        • Rafeh R.W.
        • et al.
        Amelioration of perivascular adipose inflammation reverses vascular dysfunction in a model of nonobese prediabetic metabolic challenge: potential role of antidiabetic drugs.
        Transl Res. 2019; 214: 121-143
        • Shields K.J.
        • Barinas-Mitchell E.
        • Gingo M.R.
        • et al.
        Perivascular adipose tissue of the descending thoracic aorta is associated with systemic lupus erythematosus and vascular calcification in women.
        Atherosclerosis. 2013; 231: 129-135
        • Icli B.
        • Wu W.
        • Ozdemir D.
        • et al.
        MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.
        FASEB J. 2019; (fj201802063RR)
        • Icli B.
        • Wu W.
        • Ozdemir D.
        • et al.
        MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells.
        Arterioscler Thromb Vasc Biol. 2019; 39: 1458-1474
        • Rothman K.J.
        No Adjustments Are Needed for Multiple Comparisons.
        Epidemiology. 1990; 1: 43-46
        • Rothman K.J.
        Six persistent research misconceptions.
        J Gen Intern Med. 2014; 29: 1060-1064
        • Rothman K.J.
        Modern Epidemiology: 3rd (third).
        Eur J Epidemiol. 1994; 0: 234-237