Advertisement
Review Article| Volume 49, ISSUE 1, P151-163, February 2023

Role of Lipoprotein Levels and Function in Atherosclerosis Associated with Autoimmune Rheumatic Diseases

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hansson G.K.
        • Holm J.
        • Jonasson L.
        Detection of activated T lymphocytes in the human atherosclerotic plaque.
        Am J Pathol. 1989; 135: 169-175
        • Almanzar G.
        • Öllinger R.
        • Leuenberger J.
        • et al.
        Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions.
        J Autoimmun. 2012; 39: 441-450
        • Lorey M.B.
        • Öörni K.
        • Kovanen P.T.
        Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis.
        Front Cardiovasc Med. 2022; 9: 841545
        • Stemme S.
        • Faber B.
        • Holm J.
        • et al.
        T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein.
        Proc Natl Acad Sci U S A. 1995; 92: 3893-3897
        • Catapano A.L.
        • Pirillo A.
        • Bonacina F.
        • et al.
        HDL in innate and adaptive immunity.
        Cardiovasc Res. 2014; 103: 372-383
        • Deng S.
        • Xu Y.
        • Zheng L.
        HDL Structure.
        Adv Exp Med Biol. 2022; 1377: 1-11
        • Zhang Q.
        • Jiang Z.
        • Xu Y.
        HDL and Oxidation.
        Adv Exp Med Biol. 2022; 1377: 63-77
        • Adorni M.P.
        • Ronda N.
        • Bernini F.
        • et al.
        High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives.
        Cells. 2021; 10
        • Davidson W.S.
        • Shah A.S.
        • Sexmith H.
        • et al.
        The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function.
        Biochim Biophys Acta Mol Cell Biol Lipids. 2022; 1867: 159072
        • Brites F.
        • Martin M.
        • Guillas I.
        • et al.
        Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit.
        BBA Clin. 2017; 8: 66-77
        • Yin K.
        • Chen W.-J.
        • Zhou Z.-G.
        • et al.
        Apolipoprotein A-I inhibits CD40 proinflammatory signaling via ATP-binding cassette transporter A1-mediated modulation of lipid raft in macrophages.
        J Atheroscler Thromb. 2012; 19: 823-836
        • Perrin-Cocon L.
        • Diaz O.
        • Carreras M.
        • et al.
        High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation.
        Immunobiology. 2012; 217: 91-99
        • Wilhelm A.J.
        • Zabalawi M.
        • Grayson J.M.
        • et al.
        Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity.
        Arterioscler Thromb Vasc Biol. 2009; 29: 843-849
        • Zewinger S.
        • Reiser J.
        • Jankowski V.
        • et al.
        Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation.
        Nat Immunol. 2020; 21: 30-41
        • Gugliucci A.
        • Menini T.
        Paraoxonase 1 and HDL maturation.
        Clin Chim Acta. 2015; 439: 5-13
        • Chen Z.
        • Hu M.
        The apoM-S1P axis in hepatic diseases.
        Clin Chim Acta. 2020; 511: 235-242
        • Webb N.R.
        High-Density Lipoproteins and Serum Amyloid A (SAA).
        Curr Atheroscler Rep. 2021; 23: 7
        • Zimetti F.
        • De Vuono S.
        • Gomaraschi M.
        • et al.
        Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction.
        J Lipid Res. 2017; 58: 2051-2060
        • Soria-Florido M.T.
        • Schröder H.
        • Grau M.
        • et al.
        High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis.
        Atherosclerosis. 2020; 302: 36-42
        • Ravindran R.
        • Krishnan L.K.
        Increased platelet cholesterol and decreased percentage volume of platelets as a secondary risk factor for coronary artery disease.
        Pathophysiol Haemost Thromb. 2007; 36: 45-51
        • Tziakas D.N.
        • Kaski J.C.
        • Chalikias G.K.
        • et al.
        Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: a new marker of clinical instability?.
        J Am Coll Cardiol. 2007; 49: 2081-2089
        • Allahverdian S.
        • Chehroudi A.C.
        • McManus B.M.
        • et al.
        Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis.
        Circulation. 2014; 129: 1551-1559
        • Borén J.
        • Chapman M.J.
        • Krauss R.M.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur Heart J. 2020; 41: 2313-2330
        • Skålén K.
        • Gustafsson M.
        • Rydberg E.K.
        • et al.
        Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
        Nature. 2002; 417: 750-754
        • Koschinsky M.L.
        • Boffa M.B.
        Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology.
        Atherosclerosis. 2022; 349: 92-100
        • Iseme R.A.
        • McEvoy M.
        • Kelly B.
        • et al.
        A role for autoantibodies in atherogenesis.
        Cardiovasc Res. 2017; 113: 1102-1112
        • Qin C.
        • Nagao T.
        • Grosheva I.
        • et al.
        Elevated plasma membrane cholesterol content alters macrophage signaling and function.
        Arterioscler Thromb Vasc Biol. 2006; 26: 372-378
        • Adorni M.P.
        • Favari E.
        • Ronda N.
        • et al.
        Free cholesterol alters macrophage morphology and mobility by an ABCA1 dependent mechanism.
        Atherosclerosis. 2011; 215: 70-76
        • Liu Y.-X.
        • Yuan P.-Z.
        • Wu J.-H.
        • et al.
        Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis.
        J Mol Med (Berl). 2021; 99: 1511-1526
        • Greco D.
        • Gualtierotti R.
        • Agosti P.
        • et al.
        Anti-atherogenic Modification of Serum Lipoprotein Function in Patients with Rheumatoid Arthritis after Tocilizumab Treatment, a Pilot Study.
        J Clin Med. 2020; 9https://doi.org/10.3390/jcm9072157
        • Adorni M.P.
        • Zimetti F.
        • Cangiano B.
        • et al.
        High-Density Lipoprotein Function Is Reduced in Patients Affected by Genetic or Idiopathic Hypogonadism.
        J Clin Endocrinol Metab. 2019; 104: 3097-3107
        • Stefanutti C.
        • Pisciotta L.
        • Favari E.
        • et al.
        Lipoprotein(a) concentration, genetic variants, apo(a) isoform size, and cellular cholesterol efflux in patients with elevated Lp(a) and coronary heart disease submitted or not to lipoprotein apheresis: An Italian case-control multicenter study on Lp(a).
        J Clin Lipidol. 2020; 14: 487-497.e1
        • Di Costanzo A.
        • Ronca A.
        • D’Erasmo L.
        • et al.
        HDL-Mediated Cholesterol Efflux and Plasma Loading Capacities Are Altered in Subjects with Metabolically- but Not Genetically Driven Non-Alcoholic Fatty Liver Disease (NAFLD).
        Biomedicines. 2020; 8https://doi.org/10.3390/biomedicines8120625
        • Ciurtin C.
        • Robinson G.A.
        • Pineda-Torra I.
        • et al.
        Challenges in Implementing Cardiovascular Risk Scores for Assessment of Young People With Childhood-Onset Autoimmune Rheumatic Conditions.
        Front Med. 2022; 9: 814905
        • Shoenfeld Y.
        • Gerli R.
        • Doria A.
        • et al.
        Accelerated atherosclerosis in autoimmune rheumatic diseases.
        Circulation. 2005; 112: 3337-3347
        • Quevedo-Abeledo J.C.
        • Martín-González C.
        • Ferrer-Moure C.
        • et al.
        Key Molecules of Triglycerides Pathway Metabolism Are Disturbed in Patients With Systemic Lupus Erythematosus.
        Front Immunol. 2022; 13: 827355
        • Reichlin M.
        • Fesmire J.
        • Quintero-Del-Rio A.I.
        • et al.
        Autoantibodies to lipoprotein lipase and dyslipidemia in systemic lupus erythematosus.
        Arthritis Rheum. 2002; 46: 2957-2963
        • Peng J.
        • Luo F.
        • Ruan G.
        • et al.
        Hypertriglyceridemia and atherosclerosis.
        Lipids Health Dis. 2017; 16: 233
        • Chapman M.J.
        • Ginsberg H.N.
        • Amarenco P.
        • et al.
        Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.
        Eur Heart J. 2011; 32: 1345-1361
        • Feingold K.R.
        • Grunfeld C.
        Feingold K.R. Anawalt B. Boyce A. The effect of inflammation and infection on lipids and lipoproteins. 2000
        • Borba E.F.
        • Santos R.D.
        • Bonfa E.
        • et al.
        Lipoprotein(a) levels in systemic lupus erythematosus.
        J Rheumatol. 1994; 21: 220-223
        • Ahmad H.M.
        • Sarhan E.M.
        • Komber U.
        Higher circulating levels of OxLDL % of LDL are associated with subclinical atherosclerosis in female patients with systemic lupus erythematosus.
        Rheumatol Int. 2014; 34: 617-623
        • Oates J.C.
        • Ramakrishnan V.
        • Nietert P.J.
        • et al.
        Associations between accelerated atherosclerosis, oxidized ldl immune complexes, and in vitro endothelial dysfunction in systemic lupus erythematosus.
        Trans Am Clin Climatol Assoc. 2020; 131: 157-177
        • Ferreira H.B.
        • Pereira A.M.
        • Melo T.
        • et al.
        Lipidomics in autoimmune diseases with main focus on systemic lupus erythematosus.
        J Pharm Biomed Anal. 2019; 174: 386-395
        • Smith C.K.
        • Vivekanandan-Giri A.
        • Tang C.
        • et al.
        Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus.
        Arthritis Rheumatol (Hoboken, Nj). 2014; 66: 2532-2544
        • McMahon M.
        • Grossman J.
        • FitzGerald J.
        • et al.
        Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis.
        Arthritis Rheum. 2006; 54: 2541-2549
        • Ronda N.
        • Favari E.
        • Borghi M.O.
        • et al.
        Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus.
        Ann Rheum Dis. 2014; 73: 609-615
        • Sánchez-Pérez H.
        • Quevedo-Abeledo J.C.
        • de Armas-Rillo L.
        • et al.
        Impaired HDL cholesterol efflux capacity in systemic lupus erythematosus patients is related to subclinical carotid atherosclerosis.
        Rheumatology (Oxford). 2020; 59: 2847-2856
        • Choi H.K.
        • Seeger J.D.
        Lipid profiles among US elderly with untreated rheumatoid arthritis--the Third National Health and Nutrition Examination Survey.
        J Rheumatol. 2005; 32: 2311-2316
        • Georgiadis A.N.
        • Papavasiliou E.C.
        • Lourida E.S.
        • et al.
        Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment--a prospective, controlled study.
        Arthritis Res Ther. 2006; 8: R82
        • Steiner G.
        • Urowitz M.B.
        Lipid profiles in patients with rheumatoid arthritis: mechanisms and the impact of treatment.
        Semin Arthritis Rheum. 2009; 38: 372-381
        • Schulte D.M.
        • Paulsen K.
        • Türk K.
        • et al.
        Small dense LDL cholesterol in human subjects with different chronic inflammatory diseases.
        Nutr Metab Cardiovasc Dis. 2018; 28: 1100-1105
        • Dursunoğlu D.
        • Evrengül H.
        • Polat B.
        • et al.
        Lp(a) lipoprotein and lipids in patients with rheumatoid arthritis: serum levels and relationship to inflammation.
        Rheumatol Int. 2005; 25: 241-245
        • Myasoedova E.
        • Crowson C.S.
        • Kremers H.M.
        • et al.
        Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease.
        Ann Rheum Dis. 2011; 70: 482-487
        • Karpouzas G.A.
        • Ormseth S.R.
        • Ronda N.
        • et al.
        Lipoprotein oxidation may underlie the paradoxical association of low cholesterol with coronary atherosclerotic risk in rheumatoid arthritis.
        J Autoimmun. 2022; 129: 102815
        • Bergmark C.
        • Dewan A.
        • Orsoni A.
        • et al.
        A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma.
        J Lipid Res. 2008; 49: 2230-2239
        • Ruscica M.
        • Tokgözoğlu L.
        • Corsini A.
        • et al.
        PCSK9 inhibition and inflammation: A narrative review.
        Atherosclerosis. 2019; 288: 146-155
        • Charles-Schoeman C.
        • Watanabe J.
        • Lee Y.Y.
        • et al.
        Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis.
        Arthritis Rheum. 2009; 60: 2870-2879
        • Tanimoto N.
        • Kumon Y.
        • Suehiro T.
        • et al.
        Serum paraoxonase activity decreases in rheumatoid arthritis.
        Life Sci. 2003; 72: 2877-2885
        • Xie B.
        • He J.
        • Liu Y.
        • et al.
        A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis.
        Lipids Health Dis. 2021; 20: 18
        • Yvan-Charvet L.
        • Wang N.
        • Tall A.R.
        Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses.
        Arterioscler Thromb Vasc Biol. 2010; 30: 139-143
        • Prosser H.C.
        • Ng M.K.C.
        • Bursill C.A.
        The role of cholesterol efflux in mechanisms of endothelial protection by HDL.
        . 2012; 23: 182-189
        • de Armas-Rillo L.
        • Quevedo-Abeledo J.C.
        • Hernández-Hernández V.
        • et al.
        The angiopoietin-like protein 4, apolipoprotein C3, and lipoprotein lipase axis is disrupted in patients with rheumatoid arthritis.
        Arthritis Res Ther. 2022; 24: 99
        • Voloshyna I.
        • Modayil S.
        • Littlefield M.J.
        • et al.
        Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages.
        Exp Biol Med (Maywood). 2013; 238: 1192-1197
        • Karpouzas G.A.
        • Papotti B.
        • Ormseth S.R.
        • et al.
        Serum cholesterol loading capacity on macrophages is regulated by seropositivity and C-reactive protein in rheumatoid arthritis patients, Rheumatology.
        (Oxford). 2022; : keac394
        • Cambridge G.
        • Acharya J.
        • Cooper J.A.
        • et al.
        Antibodies to citrullinated peptides and risk of coronary heart disease.
        Atherosclerosis. 2013; 228: 243-246
        • Fu Y.
        • Wu Y.
        • Liu E.
        C-reactive protein and cardiovascular disease: From animal studies to the clinic (Review).
        Exp Ther Med. 2020; 20: 1211-1219
        • Behl T.
        • Kaur I.
        • Sehgal A.
        • et al.
        The Lipid Paradox as a Metabolic Checkpoint and Its Therapeutic Significance in Ameliorating the Associated Cardiovascular Risks in Rheumatoid Arthritis Patients.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21249505
        • Naerr G.W.
        • Rein P.
        • Saely C.H.
        • et al.
        Effects of synthetic and biological disease modifying antirheumatic drugs on lipid and lipoprotein parameters in patients with rheumatoid arthritis.
        Vascul Pharmacol. 2016; 81: 22-30
        • Charles-Schoeman C.
        • Gonzalez-Gay M.A.
        • Kaplan I.
        • et al.
        Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist.
        Semin Arthritis Rheum. 2016; 46: 71-80
        • Karpouzas G.A.
        • Ormseth S.R.
        • Hernandez E.
        • et al.
        Biologics May Prevent Cardiovascular Events in Rheumatoid Arthritis by Inhibiting Coronary Plaque Formation and Stabilizing High-Risk Lesions.
        Arthritis Rheumatol (Hoboken, Nj). 2020; 72: 1467-1475
        • Morris S.J.
        • Wasko M.C.M.
        • Antohe J.L.
        • et al.
        Hydroxychloroquine use associated with improvement in lipid profiles in rheumatoid arthritis patients.
        Arthritis Care Res (Hoboken). 2011; 63: 530-534
        • Wallace D.J.
        • Metzger A.L.
        • Stecher V.J.
        • et al.
        Cholesterol-lowering effect of hydroxychloroquine in patients with rheumatic disease: reversal of deleterious effects of steroids on lipids.
        Am J Med. 1990; 89: 322-326
        • Lang M.G.
        • Vinagre C.G.
        • Bonfa E.
        • et al.
        Hydroxychloroquine increased cholesterol transfer to high-density lipoprotein in systemic lupus erythematosus: A possible mechanism for the reversal of atherosclerosis in the disease.
        Lupus. 2022; 31: 659-665
        • Charles-Schoeman C.
        • Yin Lee Y.
        • Shahbazian A.
        • et al.
        Improvement of High-Density Lipoprotein Function in Patients With Early Rheumatoid Arthritis Treated With Methotrexate Monotherapy or Combination Therapies in a Randomized Controlled Trial.
        Arthritis Rheumatol (Hoboken, Nj). 2017; 69: 46-57
        • Charles-Schoeman C.
        • Gugiu G.B.
        • Ge H.
        • et al.
        Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis.
        Atherosclerosis. 2018; 275: 107-114
        • Raterman H.G.
        • Levels H.
        • Voskuyl A.E.
        • et al.
        HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab.
        Ann Rheum Dis. 2013; 72: 560-565
        • Cacciapaglia F.
        • Perniola S.
        • Venerito V.
        • et al.
        The Impact of Biologic Drugs on High-Density Lipoprotein Cholesterol Efflux Capacity in Rheumatoid Arthritis Patients.
        J Clin Rheumatol Pract Reports Rheum Musculoskelet Dis. 2022; 28: e145-e149
        • Ronda N.
        • Greco D.
        • Adorni M.P.
        • et al.
        Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism.
        Arthritis Rheumatol (Hoboken, Nj). 2015; 67: 1155-1164
        • Reiss A.B.
        • Carsons S.E.
        • Anwar K.
        • et al.
        Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages.
        Arthritis Rheum. 2008; 58: 3675-3683
        • Voloshyna I.
        • Seshadri S.
        • Anwar K.
        • et al.
        Infliximab reverses suppression of cholesterol efflux proteins by TNF-α: a possible mechanism for modulation of atherogenesis.
        Biomed Res Int. 2014; 2014: 312647
        • Hollan I.
        • Ronda N.
        • Dessein P.
        • et al.
        Lipid management in rheumatoid arthritis: a position paper of the Working Group on Cardiovascular Pharmacotherapy of the European Society of Cardiology.
        Eur Hear Journal Cardiovasc Pharmacother. 2020; 6: 104-114