Advertisement

Myocardial Involvement in Systemic Autoimmune Rheumatic Diseases

  • Alexia A. Zagouras
    Affiliations
    Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, , EC-10 Cleveland Clinic, 9501 Euclid Avenue, Cleveland, OH 44195, USA
    Search for articles by this author
  • W.H. Wilson Tang
    Correspondence
    Corresponding author. 9500 Euclid Avenue, Desk J3-4, Cleveland, OH 44195.
    Affiliations
    Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, , EC-10 Cleveland Clinic, 9501 Euclid Avenue, Cleveland, OH 44195, USA

    Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Rheumatic Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitratza M.
        • Klijs B.
        • Hak A.E.
        • et al.
        Systemic autoimmune disease as a cause of death: mortality burden and comorbidities.
        Rheumatology. 2021; 60: 1321-1330
        • Lee K.S.
        • Kronbichler A.
        • Eisenhut M.
        • et al.
        Cardiovascular involvement in systemic rheumatic diseases: an integrated view for the treating physicians.
        Autoimmun Rev. 2018; 17: 201-214
        • De Lorenzis E.
        • Gremese E.
        • Bosello S.
        • et al.
        Microvascular heart involvement in systemic autoimmune diseases: The purinergic pathway and therapeutic insights from the biology of the diseases.
        Autoimmun Rev. 2019; 18: 317-324
        • Caforio A.L.P.
        • Marcolongo R.
        • Baritussio A.
        • et al.
        Myocarditis in systemic immune-mediated diseases.
        in: Caforio A.L.P. Myocarditis: pathogenesis, diagnosis and treatment. Springer International Publishing, 2020: 195-221https://doi.org/10.1007/978-3-030-35276-9_11
        • Bartoloni E.
        • Shoenfeld Y.
        • Gerli R.
        Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin.
        Arthritis Care Res (Hoboken). 2011; 63: 178-183
        • Full L.E.
        • Ruisanchez C.
        • Monaco C.
        The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus.
        Arthritis Res Ther. 2009; 11: 217
        • Ku I.A.
        • Imboden J.B.
        • Hsue P.Y.
        • et al.
        Rheumatoid arthritis: model of systemic inflammation driving atherosclerosis.
        Circ J. 2009; 73: 977-985
        • Prasad M.
        • Hermann J.
        • Gabriel S.E.
        • et al.
        Cardiorheumatology: cardiac involvement in systemic rheumatic disease.
        Nat Rev Cardiol. 2015; 12: 168-176
        • Montecucco F.
        • Mach F.
        Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis.
        Rheumatology (Oxford). 2009; 48: 11-22
        • Breland U.M.
        • Hollan I.
        • Saatvedt K.
        • et al.
        Inflammatory markers in patients with coronary artery disease with and without inflammatory rheumatic disease.
        Rheumatology (Oxford). 2010; 49: 1118-1127
        • Faccini A.
        • Kaski J.C.
        • Camici P.G.
        Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases.
        Eur Heart J. 2016; 37: 1799-1806
        • Camici P.G.
        • d’Amati G.
        • Rimoldi O.
        Coronary microvascular dysfunction: mechanisms and functional assessment.
        Nat Rev Cardiol. 2015; 12: 48-62
        • Mohammed S.F.
        • Hussain S.
        • Mirzoyev S.A.
        • et al.
        Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction.
        Circulation. 2015; 131: 550-559
        • Sorop O.
        • Heinonen I.
        • van Kranenburg M.
        • et al.
        Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening.
        Cardiovasc Res. 2018; 114: 954-964
        • Zanatta E.
        • Colombo C.
        • D’Amico G.
        • et al.
        Inflammation and coronary microvascular dysfunction in autoimmune rheumatic diseases.
        Int J Mol Sci. 2019; 20: 5563
        • Vaccarino V.
        • Khan D.
        • Votaw J.
        • et al.
        Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins.
        J Am Coll Cardiol. 2011; 57: 1271-1279
        • Yılmaz S.
        • Caliskan M.
        • Kulaksızoglu S.
        • et al.
        Association between serum total antioxidant status and coronary microvascular functions in patients with SLE.
        Echocardiography. 2012; 29: 1218-1223
        • Dinesh P.
        • Rasool M.
        uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action.
        Pharmacol Res. 2018; 134: 31-39
        • Toldi G.
        • Szalay B.
        • Bekő G.
        • et al.
        Plasma soluble urokinase plasminogen activator receptor (suPAR) levels in systemic lupus erythematosus.
        Biomarkers. 2012; 17: 758-763
        • Mekonnen G.
        • Corban M.T.
        • Hung O.Y.
        • et al.
        Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease.
        Atherosclerosis. 2015; 239: 55-60
        • Cutolo M.
        • Soldano S.
        • Smith V.
        Pathophysiology of systemic sclerosis: current understanding and new insights.
        Expert Rev Clin Immunol. 2019; 15: 753-764
        • Maurer B.
        • Distler J.H.W.
        • Distler O.
        The Fra-2 transgenic mouse model of systemic sclerosis.
        Vasc Pharmacol. 2013; 58: 194-201
        • Venalis P.
        • Kumánovics G.
        • Schulze-Koops H.
        • et al.
        Cardiomyopathy in murine models of systemic sclerosis.
        Arthritis Rheumatol. 2015; 67: 508-516
        • Maurer B.
        • Busch N.
        • Jüngel A.
        • et al.
        Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis.
        Circulation. 2009; 120: 2367-2376
        • Giacomo R.
        • Sheon M.
        • Christine M.
        • et al.
        Reduced lymphatic reserve in heart failure with preserved ejection fraction.
        J Am Coll Cardiol. 2020; 76: 2817-2829
        • Schwartz N.
        • Chalasani M.L.S.
        • Li T.M.
        • et al.
        Lymphatic function in autoimmune diseases.
        Front Immunol. 2019; 10: 519
        • Rossi A.
        • Sozio F.
        • Sestini P.
        • et al.
        Lymphatic and blood vessels in scleroderma skin, a morphometric analysis.
        Hum Pathol. 2010; 41: 366-374
        • Bouta E.M.
        • Bell R.D.
        • Rahimi H.
        • et al.
        Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis.
        Nat Rev Rheumatol. 2018; 14: 94-106
        • Bracamonte-Baran W.
        • Čiháková D.
        Cardiac autoimmunity: myocarditis.
        Adv Exp Med Biol. 2017; 1003: 187-221
        • Ryabkova V.A.
        • Shubik Y.V.
        • Erman M.V.
        • et al.
        Lethal immunoglobulins: autoantibodies and sudden cardiac death.
        Autoimmun Rev. 2019; 18: 415-425
        • Myers J.M.
        • Fairweather D.
        • Huber S.A.
        • et al.
        Autoimmune myocarditis, valvulitis, and cardiomyopathy.
        Curr Protoc Immunol. 2013; (Chapter 15:Unit 15.14): 1-51
        • Nagatomo Y.
        • Tang W.H.W.
        Autoantibodies and cardiovascular dysfunction: cause or consequence?.
        Curr Heart Fail Rep. 2014; 11: 500-508
        • Li Y.
        • Heuser J.S.
        • Kosanke S.D.
        • et al.
        Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat.
        J Immunol. 2004; 172: 3225-3234
        • Mascaro-Blanco A.
        • Alvarez K.
        • Yu X.
        • et al.
        Consequences of unlocking the cardiac myosin molecule in human myocarditis and cardiomyopathies.
        Autoimmunity. 2008; 41: 442-453
        • Myers J.M.
        • Cooper L.T.
        • Kem D.C.
        • et al.
        Cardiac myosin-Th17 responses promote heart failure in human myocarditis.
        JCI Insight. 2016; 1: 85851
        • Düngen H.-D.
        • Dordevic A.
        • Felix S.B.
        • et al.
        β1-adrenoreceptor autoantibodies in heart failure: physiology and therapeutic implications.
        Circ Heart Fail. 2020; 13: e006155
        • Nagatomo Y.
        • Li D.
        • Kirsop J.
        • et al.
        Autoantibodies specifically against β1 adrenergic receptors and adverse clinical outcome in patients with chronic systolic heart failure in the β-blocker era: the importance of immunoglobulin G3 subclass.
        J Card Fail. 2016; 22: 417-422
        • Kill A.
        • Tabeling C.
        • Undeutsch R.
        • et al.
        Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis.
        Arthritis Res Ther. 2014; 16: R29
        • Kiriakidou M.
        • Ching C.L.
        Systemic lupus erythematosus.
        Ann Intern Med. 2020; 172: ITC81-ITC96
        • Durcan L.
        • O’Dwyer T.
        • Petri M.
        Management strategies and future directions for systemic lupus erythematosus in adults.
        Lancet. 2019; 393: 2332-2343
        • Miner J.J.
        • Kim A.H.J.
        Cardiac manifestations of systemic lupus erythematosus.
        Rheum Dis Clin North Am. 2014; 40: 51-60
        • Thomas G.
        • Cohen Aubart F.
        • Chiche L.
        • et al.
        Lupus Myocarditis: Initial Presentation and Longterm Outcomes in a Multicentric Series of 29 Patients.
        J Rheumatol. 2017; 44: 24-32
        • Bulkley B.H.
        • Roberts W.C.
        The heart in systemic lupus erythematosus and the changes induced in it by corticosteroid therapy. A study of 36 necropsy patients.
        Am J Med. 1975; 58: 243-264
        • Mavrogeni S.
        • Bratis K.
        • Markussis V.
        • et al.
        The diagnostic role of cardiac magnetic resonance imaging in detecting myocardial inflammation in systemic lupus erythematosus. Differentiation from viral myocarditis.
        Lupus. 2013; 22: 34-43
        • Jain D.
        • Halushka M.K.
        Cardiac pathology of systemic lupus erythematosus.
        J Clin Pathol. 2009; 62: 584-592
        • Prasada S.
        • Rivera A.
        • Nishtala A.
        • et al.
        Differential associations of chronic inflammatory diseases with incident heart failure.
        JACC: Heart Fail. 2020; 8: 489-498
        • Chen J.
        • Tang Y.
        • Zhu M.
        • et al.
        Heart involvement in systemic lupus erythematosus: a systemic review and meta-analysis.
        Clin Rheumatol. 2016; 35: 2437-2448
        • Leone P.
        • Cicco S.
        • Prete M.
        • et al.
        Early echocardiographic detection of left ventricular diastolic dysfunction in patients with systemic lupus erythematosus asymptomatic for cardiovascular disease.
        Clin Exp Med. 2020; 20: 11-19
        • Roldan C.A.
        • Alomari I.B.
        • Awad K.
        • et al.
        Aortic stiffness is associated with left ventricular diastolic dysfunction in systemic lupus erythematosus: a controlled transesophageal echocardiographic study.
        Clin Cardiol. 2014; 37: 83-90
        • Seneviratne M.G.
        • Grieve S.M.
        • Figtree G.A.
        • et al.
        Prevalence, distribution and clinical correlates of myocardial fibrosis in systemic lupus erythematosus: a cardiac magnetic resonance study.
        Lupus. 2016; 25: 573-581
        • Shang Q.
        • Yip G.W.K.
        • Tam L.S.
        • et al.
        SLICC/ACR damage index independently associated with left ventricular diastolic dysfunction in patients with systemic lupus erythematosus.
        Lupus. 2012; 21: 1057-1062
        • Chorin E.
        • Hochstadt A.
        • Arad U.
        • et al.
        Soluble ST2 and CXCL-10 may serve as biomarkers of subclinical diastolic dysfunction in SLE and correlate with disease activity and damage.
        Lupus. 2020; 29: 1430-1437
        • Dhakal B.P.
        • Kim C.H.
        • Al-Kindi S.G.
        • et al.
        Heart failure in systemic lupus erythematosus.
        Trends Cardiovasc Med. 2018; 28: 187-197
        • Wainwright B.
        • Bhan R.
        • Trad C.
        • et al.
        Autoimmune-mediated congenital heart block.
        Best Pract Res Clin Obstet Gynaecol. 2020; 64: 41-51
        • Scott J.S.
        • Maddison P.J.
        • Taylor P.V.
        • et al.
        Connective-tissue disease, antibodies to ribonucleoprotein, and congenital heart block.
        N Engl J Med. 1983; 309: 209-212
        • Jayaprasad N.
        • Johnson F.
        • Venugopal K.
        Congenital complete heart block and maternal connective tissue disease.
        Int J Cardiol. 2006; 112: 153-158
        • Moak J.P.
        • Barron K.S.
        • Hougen T.J.
        • et al.
        Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela.
        J Am Coll Cardiol. 2001; 37: 238-242
        • Izmirly P.
        • Kim M.
        • Friedman D.M.
        • et al.
        Hydroxychloroquine to prevent recurrent congenital heart block in fetuses of Anti-SSA/Ro-positive mothers.
        J Am Coll Cardiol. 2020; 76: 292-302
        • McInnes I.B.
        • Schett G.
        The pathogenesis of rheumatoid arthritis.
        N Engl J Med. 2011; 365: 2205-2219
        • Solomon D.H.
        • Karlson E.W.
        • Rimm E.B.
        • et al.
        Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis.
        Circulation. 2003; 107: 1303-1307
        • Gabriel S.E.
        Cardiovascular morbidity and mortality in rheumatoid arthritis.
        Am J Med. 2008; 121: S9-S14
        • Elbadawi A.
        • Ahmed H.M.A.
        • Elgendy I.Y.
        • et al.
        Outcomes of acute myocardial infarction in patients with rheumatoid arthritis.
        Am J Med. 2020; 133: 1168-1179.e4
        • Nicola P.J.
        • Maradit-Kremers H.
        • Roger V.L.
        • et al.
        The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years.
        Arthritis Rheum. 2005; 52: 412-420
        • Lebowitz W.B.
        The heart in rheumatoid arthritis (rheumatoid disease). A clinical and pathological study of sixty-two cases.
        Ann Intern Med. 1963; 58: 102-123
        • Pappas D.A.
        • Taube J.M.
        • Bathon J.M.
        • et al.
        A 73-year-old woman with rheumatoid arthritis and shortness of breath.
        Arthritis Rheum. 2008; 59: 892-899
        • Ntusi N.A.B.
        • Piechnik S.K.
        • Francis J.M.
        • et al.
        Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping.
        JACC Cardiovasc Imaging. 2015; 8: 526-536
        • Greulich S.
        • Mayr A.
        • Kitterer D.
        • et al.
        Advanced myocardial tissue characterisation by a multi-component CMR protocol in patients with rheumatoid arthritis.
        Eur Radiol. 2017; 27: 4639-4649
        • Denton C.P.
        • Khanna D.
        Systemic sclerosis.
        The Lancet. 2017; 390: 1685-1699
        • Bissell L.-A.
        • Md Yusof MY
        • Buch M.H.
        Primary myocardial disease in scleroderma-a comprehensive review of the literature to inform the UK Systemic Sclerosis Study Group cardiac working group.
        Rheumatology (Oxford). 2017; 56: 882-895
        • Chatterjee S.
        Pulmonary hypertension in systemic sclerosis.
        Semin Arthritis Rheum. 2011; 41: 19-37
        • Launay D.
        • Sobanski V.
        • Hachulla E.
        • et al.
        Pulmonary hypertension in systemic sclerosis: different phenotypes.
        Eur Respir Rev. 2017; 26https://doi.org/10.1183/16000617.0056-2017
        • Fox B.D.
        • Shimony A.
        • Langleben D.
        • et al.
        High prevalence of occult left heart disease in scleroderma-pulmonary hypertension.
        Eur Respir J. 2013; 42: 1083-1091
        • Bourji K.I.
        • Kelemen B.W.
        • Mathai S.C.
        • et al.
        Poor survival in patients with scleroderma and pulmonary hypertension due to heart failure with preserved ejection fraction.
        Pulm Circ. 2017; 7: 409-420
        • Rubio-Rivas M.
        • Corbella X.
        • Guillén-Del-Castillo A.
        • et al.
        Spanish scleroderma risk score (RESCLESCORE) to predict 15-year all-cause mortality in scleroderma patients at the time of diagnosis based on the RESCLE cohort: derivation and internal validation.
        Autoimmun Rev. 2020; 19: 102507
        • Ciurzyński M.
        • Bienias P.
        • Lichodziejewska B.
        • et al.
        Assessment of left and right ventricular diastolic function in patients with systemic sclerosis.
        Kardiol Pol. 2008; 66 ([discussion: 277-278]): 269-276
        • Tennøe A.H.
        • Murbræch K.
        • Andreassen J.C.
        • et al.
        Left ventricular diastolic dysfunction predicts mortality in patients with systemic sclerosis.
        J Am Coll Cardiol. 2018; 72: 1804-1813
        • Sulli A.
        • Ghio M.
        • Bezante G.P.
        • et al.
        Blunted coronary flow reserve in systemic sclerosis.
        Rheumatology (Oxford). 2004; 43: 505-509
        • Valentini G.
        • Vitale D.F.
        • Giunta A.
        • et al.
        Diastolic abnormalities in systemic sclerosis: evidence for associated defective cardiac functional reserve.
        Ann Rheum Dis. 1996; 55: 455-460
        • Zanatta E.
        • Famoso G.
        • Boscain F.
        • et al.
        Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: a newsworthy association.
        Autoimmun Rev. 2019; 18: 177-183
        • Mukherjee M.
        • Chung S.-E.
        • Ton V.K.
        • et al.
        Unique Abnormalities in right ventricular longitudinal strain in systemic sclerosis patients.
        Circ Cardiovasc Imaging. 2016; 9https://doi.org/10.1161/CIRCIMAGING.115.003792
        • Yiu K.H.
        • Schouffoer A.A.
        • Marsan N.A.
        • et al.
        Left ventricular dysfunction assessed by speckle-tracking strain analysis in patients with systemic sclerosis: relationship to functional capacity and ventricular arrhythmias.
        Arthritis Rheum. 2011; 63: 3969-3978
        • Rodríguez-Reyna T.S.
        • Morelos-Guzman M.
        • Hernández-Reyes P.
        • et al.
        Assessment of myocardial fibrosis and microvascular damage in systemic sclerosis by magnetic resonance imaging and coronary angiotomography.
        Rheumatology (Oxford). 2015; 54: 647-654
        • Mavrogeni S.
        • Koutsogeorgopoulou L.
        • Karabela G.
        • et al.
        Silent myocarditis in systemic sclerosis detected by cardiovascular magnetic resonance using Lake Louise criteria.
        BMC Cardiovasc Disord. 2017; 17: 187
        • Mohameden M.
        • Vashisht P.
        • Sharman T.
        Scleroderma and primary myocardial disease.
        in: StatPearls. StatPearls Publishing, 2020 (Available at:) (Accessed July 22, 2020)
        • Allanore Y.
        • Meune C.
        Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin.
        Clin Exp Rheumatol. 2010; 28: S48-S53
        • West S.G.
        • Killian P.J.
        • Lawless O.J.
        Association of myositis and myocarditis in progressive systemic sclerosis.
        Arthritis Rheum. 1981; 24: 662-668
        • De Luca G.
        • Campochiaro C.
        • De Santis M.
        • et al.
        Systemic sclerosis myocarditis has unique clinical, histological and prognostic features: a comparative histological analysis.
        Rheumatology (Oxford). 2020; https://doi.org/10.1093/rheumatology/kez658
        • Hesselstrand R.
        • Scheja A.
        • Shen G.Q.
        • et al.
        The association of antinuclear antibodies with organ involvement and survival in systemic sclerosis.
        Rheumatology (Oxford). 2003; 42: 534-540
        • Machado C.
        • Sunkel C.E.
        • Andrew D.J.
        Human autoantibodies reveal titin as a chromosomal protein.
        J Cell Biol. 1998; 141: 321-333
        • Riemekasten G.
        • Philippe A.
        • Näther M.
        • et al.
        Involvement of functional autoantibodies against vascular receptors in systemic sclerosis.
        Ann Rheum Dis. 2011; 70: 530-536
        • Manetti M.
        • Milia A.F.
        • Guiducci S.
        • et al.
        Progressive loss of lymphatic vessels in skin of patients with systemic sclerosis.
        J Rheumatol. 2011; 38: 297-301
        • Furuta S.
        • Iwamoto T.
        • Nakajima H.
        Update on eosinophilic granulomatosis with polyangiitis.
        Allergol Int. 2019; 68: 430-436
        • Miloslavsky E.
        • Unizony S.
        The heart in vasculitis.
        Rheum Dis Clin North Am. 2014; 40: 11-26
        • Chang H.-C.
        • Chou P.-C.
        • Lai C.-Y.
        • et al.
        Antineutrophil cytoplasmic antibodies and organ-specific manifestations in eosinophilic granulomatosis with polyangiitis: a systematic review and meta-analysis.
        J Allergy Clin Immunol Pract. 2021; 9: 445-452.e6
        • Dalia T.
        • Parashar S.
        • Patel N.V.
        • et al.
        Eosinophilic myocarditis demonstrated using cardiac magnetic resonance imaging in a patient with eosinophilic granulomatosis with polyangiitis (churg-strauss disease).
        Cureus. 2018; 10: e2792
        • Comarmond C.
        • Pagnoux C.
        • Khellaf M.
        • et al.
        Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort.
        Arthritis Rheum. 2013; 65: 270-281
        • Szczeklik W.
        • Miszalski-Jamka T.
        Cardiac involvement in eosinophilic granulomatosis with polyangitis (Churg Strauss) (RCD code: I-3A.7a).
        J Rare Cardiovasc Dis. 2014; 1: 91-95
        • Dennert R.M.
        • van Paassen P.
        • Schalla S.
        • et al.
        Cardiac involvement in Churg-Strauss syndrome.
        Arthritis Rheum. 2010; 62: 627-634
        • Brucato A.
        • Maestroni S.
        • Masciocco G.
        • et al.
        [Cardiac involvement in Churg-Strauss syndrome].
        G Ital Cardiol (Rome). 2015; 16: 493-500
        • Moosig F.
        • Bremer J.P.
        • Hellmich B.
        • et al.
        A vasculitis centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg-Strauss, EGPA): monocentric experiences in 150 patients.
        Ann Rheum Dis. 2013; 72: 1011-1017
        • Steinfeld J.
        • Bradford E.S.
        • Brown J.
        • et al.
        Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis.
        J Allergy Clin Immunol. 2019; 143: 2170-2177
        • Jennette J.C.
        • Falk R.J.
        • Bacon P.A.
        • et al.
        2012 Revised international chapel hill consensus conference nomenclature of vasculitides.
        Arthritis Rheum. 2013; 65: 1-11
        • McGeoch L.
        • Carette S.
        • Cuthbertson D.
        • et al.
        Cardiac involvement in granulomatosis with polyangiitis.
        J Rheumatol. 2015; 42: 1209-1212
        • Guillevin L.
        • Pagnoux C.
        • Seror R.
        • et al.
        The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort.
        Medicine (Baltimore). 2011; 90: 19-27
        • Walsh M.
        • Flossmann O.
        • Berden A.
        • et al.
        Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis.
        Arthritis Rheum. 2012; 64: 542-548
        • Hanna R.M.
        • Lopez E.
        • Wilson J.
        Granulomatosis with polyangiitis with myocarditis and ventricular tachycardia.
        Case Rep Med. 2017; 2017: 6501738
        • Munch A.
        • Sundbøll J.
        • Høyer S.
        • et al.
        Acute myocarditis in a patient with newly diagnosed granulomatosis with polyangiitis.
        Case Rep Cardiol. 2015; 2015: 134529
        • Guillevin L.
        • Pagnoux C.
        • Karras A.
        • et al.
        Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis.
        N Engl J Med. 2014; 371: 1771-1780
        • Oliveira G.H.M.
        • Seward J.B.
        • Tsang T.S.M.
        • et al.
        Echocardiographic findings in patients with wegener granulomatosis.
        Mayo Clinic Proc. 2005; 80: 1435-1440
        • Luciano N.
        • Valentini V.
        • Calabrò A.
        • et al.
        One year in review 2015: Sjögren’s syndrome.
        Clin Exp Rheumatol. 2015; 33: 259-271
        • Chiang C.-H.
        • Liu C.-J.
        • Chen P.-J.
        • et al.
        Primary sjögren’s syndrome and the risk of acute myocardial infarction: a nationwide study.
        Acta Cardiol Sin. 2013; 29: 124-131
        • Bartoloni E.
        • Baldini C.
        • Schillaci G.
        • et al.
        Cardiovascular disease risk burden in primary Sjögren’s syndrome: results of a population-based multicentre cohort study.
        J Intern Med. 2015; 278: 185-192
        • Gyöngyösi M.
        • Pokorny G.
        • Jambrik Z.
        • et al.
        Cardiac manifestations in primary Sjögren’s syndrome.
        Ann Rheum Dis. 1996; 55: 450-454
        • Vassiliou V.A.
        • Moyssakis I.
        • Boki K.A.
        • et al.
        Is the heart affected in primary Sjögren’s syndrome? An echocardiographic study.
        Clin Exp Rheumatol. 2008; 26: 109-112
        • Bayram N.A.
        • Cicek O.F.
        • Erten S.
        • et al.
        Assessment of left ventricular functions in patients with Sjögren’s syndrome using tissue Doppler echocardiography.
        Int J Rheum Dis. 2013; 16: 425-429
        • Levin M.D.
        • Zoet-Nugteren S.K.
        • Markusse H.M.
        Myocarditis and primary Sjögren’s syndrome.
        Lancet. 1999; 354: 128-129
        • Kau C.-K.
        • Hu J.-C.
        • Lu L.-Y.
        • et al.
        Primary Sjögren’s syndrome complicated with cryoglobulinemic glomerulonephritis, myocarditis, and multi-organ involvement.
        J Formos Med Assoc. 2004; 103: 707-710
        • Brito-Zerón P.
        • Pasoto S.G.
        • Robles-Marhuenda A.
        • et al.
        Autoimmune congenital heart block and primary Sjögren’s syndrome: characterisation and outcomes of 49 cases.
        Clin Exp Rheumatol. 2020; 38 (4): 95-102
        • Caforio A.L.P.
        • Adler Y.
        • Agostini C.
        • et al.
        Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease.
        Eur Heart J. 2017; 38: 2649-2662
        • Hamzeh N.
        • Steckman D.A.
        • Sauer W.H.
        • et al.
        Pathophysiology and clinical management of cardiac sarcoidosis.
        Nat Rev Cardiol. 2015; 12: 278-288
        • Iwai K.
        • Takemura T.
        • Kitaichi M.
        • et al.
        Pathological studies on sarcoidosis autopsy. II. Early change, mode of progression and death pattern.
        Acta Pathol Jpn. 1993; 43: 377-385
        • Perry A.
        • Vuitch F.
        Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations.
        Arch Pathol Lab Med. 1995; 119: 167-172
        • Baughman R.P.
        • Teirstein A.S.
        • Judson M.A.
        • et al.
        Clinical characteristics of patients in a case control study of sarcoidosis.
        Am J Respir Crit Care Med. 2001; 164: 1885-1889
        • Iwai K.
        • Sekiguti M.
        • Hosoda Y.
        • et al.
        Racial difference in cardiac sarcoidosis incidence observed at autopsy.
        Sarcoidosis. 1994; 11: 26-31
        • Kusano K.F.
        • Satomi K.
        Diagnosis and treatment of cardiac sarcoidosis.
        Heart. 2016; 102: 184-190
        • Uusimaa P.
        • Ylitalo K.
        • Anttonen O.
        • et al.
        Ventricular tachyarrhythmia as a primary presentation of sarcoidosis.
        Europace. 2008; 10: 760-766
        • Koplan B.A.
        • Soejima K.
        • Baughman K.
        • et al.
        Refractory ventricular tachycardia secondary to cardiac sarcoid: Electrophysiologic characteristics, mapping, and ablation.
        Heart Rhythm. 2006; 3: 924-929
        • Zhu T.Y.
        • Li E.K.
        • Tam L.-S.
        Cardiovascular risk in patients with psoriatic arthritis.
        Int J Rheumatol. 2012; 2012
        • Wong K.
        • Gladman D.D.
        • Husted J.
        • et al.
        Mortality studies in psoriatic arthritis: results from a single outpatient clinic. I. Causes and risk of death.
        Arthritis Rheum. 1997; 40: 1868-1872
        • Buckley C.
        • Cavill C.
        • Taylor G.
        • et al.
        Mortality in psoriatic arthritis – a single-center study from the UK.
        J Rheumatol. 2010; 37: 2141-2144
        • Liew J.W.
        • Ramiro S.
        • Gensler L.S.
        Cardiovascular morbidity and mortality in ankylosing spondylitis and psoriatic arthritis.
        Best Pract Res Clin Rheumatol. 2018; 32: 369-389
        • Haroon N.N.
        • Paterson J.M.
        • Li P.
        • et al.
        Patients with ankylosing spondylitis have increased cardiovascular and cerebrovascular mortality.
        Ann Intern Med. 2015; 163: 409-416
        • Husted J.A.
        • Thavaneswaran A.
        • Chandran V.
        • et al.
        Cardiovascular and other comorbidities in patients with psoriatic arthritis: a comparison with patients with psoriasis.
        Arthritis Care Res (Hoboken). 2011; 63: 1729-1735
        • Atluri R.B.
        Inflammatory myopathies.
        Mo Med. 2016; 113: 127-130
        • Zhang L.
        • Wang G.
        • Ma L.
        • et al.
        Cardiac involvement in adult polymyositis or dermatomyositis: a systematic review.
        Clin Cardiol. 2012; 35: 686-691
        • Gonzalez-Lopez L.
        • Gamez-Nava J.I.
        • Sanchez L.
        • et al.
        Cardiac manifestations in dermato-polymyositis.
        Clin Exp Rheumatol. 1996; 14: 373-379
        • Allanore Y.
        • Vignaux O.
        • Arnaud L.
        • et al.
        Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging.
        Ann Rheum Dis. 2006; 65: 249-252
        • Garg V.
        • Tan W.
        • Ardehali R.
        • et al.
        Giant cell myocarditis masquerading as orbital myositis with a rapid, fulminant course necessitating mechanical support and heart transplantation.
        ESC Heart Fail. 2017; 4: 371-375
        • Dalakas M.C.
        Inflammatory muscle diseases.
        N Engl J Med. 2015; 372: 1734-1747
        • Dankó K.
        • Ponyi A.
        • Constantin T.
        • et al.
        Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases.
        Medicine (Baltimore). 2004; 83: 35-42
        • Schrezenmeier E.
        • Dörner T.
        Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology.
        Nat Rev Rheumatol. 2020; 16: 155-166
        • Chatre C.
        • Roubille F.
        • Vernhet H.
        • et al.
        Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature.
        Drug Saf. 2018; 41: 919-931
        • Nadeem U.
        • Raafey M.
        • Kim G.
        • et al.
        Chloroquine- and hydroxychloroquine-induced cardiomyopathy: a case report and brief literature review.
        Am J Clin Pathol. 2021; 155: 793-801
        • Jang D.-I.
        • Lee A.-H.
        • Shin H.-Y.
        • et al.
        The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.
        Int J Mol Sci. 2021; 22: 2719
        • Chung E.S.
        • Packer M.
        • Lo K.H.
        • et al.
        Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial.
        Circulation. 2003; 107: 3133-3140
        • Sinagra E.
        • Perricone G.
        • Romano C.
        • et al.
        Heart failure and anti tumor necrosis factor-alpha in systemic chronic inflammatory diseases.
        Eur J Intern Med. 2013; 24: 385-392
        • Coletta A.P.
        • Clark A.L.
        • Banarjee P.
        • et al.
        Clinical trials update: RENEWAL (RENAISSANCE and RECOVER) and ATTACH.
        Eur J Heart Fail. 2002; 4: 559-561
        • Iqubal A.
        • Iqubal M.K.
        • Sharma S.
        • et al.
        Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision.
        Life Sci. 2019; 218: 112-131
        • Kurauchi K.
        • Nishikawa T.
        • Miyahara E.
        • et al.
        Role of metabolites of cyclophosphamide in cardiotoxicity.
        BMC Res Notes. 2017; 10: 406
        • Higgins A.Y.
        • O’Halloran T.D.
        • Chang J.D.
        Chemotherapy-induced cardiomyopathy.
        Heart Fail Rev. 2015; 20: 721-730
        • Caforio A.L.P.
        • Pankuweit S.
        • Arbustini E.
        • et al.
        Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases.
        Eur Heart J. 2013; 34 (2648a-2648d): 2636-2648
        • Bissell L.-A.
        • Anderson M.
        • Burgess M.
        • et al.
        Consensus best practice pathway of the UK Systemic Sclerosis Study group: management of cardiac disease in systemic sclerosis.
        Rheumatology (Oxford). 2017; 56: 912-921
        • Hamzeh N.Y.
        • Wamboldt F.S.
        • Weinberger H.D.
        Management of cardiac sarcoidosis in the United States: a Delphi study.
        Chest. 2012; 141: 154-162
        • Baker M.C.
        • Sheth K.
        • Witteles R.
        • et al.
        TNF-alpha inhibition for the treatment of cardiac sarcoidosis.
        Semin Arthritis Rheum. 2020; 50: 546-552